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We present a semiclassical calculation of the generalized form fégi#) which characterizes the fluc-

tuations of matrix elements of the operatérandB in the eigenbasis of the Hamiltonian of a chaotic system.

Our approach is based on some recently developed techniques for the spectral form factor of systems with
hyperbolic and ergodic underlying classical dynamics &n@ degrees of freedom, that allow us to go beyond

the diagonal approximation. First we extend these techniques to systemiswithThen we use these results

to calculateK ,,(7). We show that the dependence on the rescaled tittiene in units of the Heisenberg time

is universal for both the spectral and the generalized form factor. Furthermore, we derive a relation between

Kan(7) and the classical time-correlation function of the Weyl symbolé ahd b.
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[. INTRODUCTION This approach, originally formulated in the configuration
space, was first applied to the next-to-leading order correc-
tion of the spectral form factor of a uniformly hyperbolic

In a number of recent works the quantum spectral statisSystem showing agreement with the RMT predictions. In
tics of closed chaotic systems was investigated in the semgBubsequent works, extensions to a phase-space formulation
classical limit. According to a conjecture by Bohigas, Gian-applicable to nonuniformly hyperbolic systerf&9] and to
noni, and Schmif1] (BGS), the fluctuations of the energy higher-order correction§l1] were proposed. However, all
levels are system independent and coincide with the predid—hese previous considerations were restricted to systems with
tions of random-matrix theoryRMT) if the system has a f=2 degrees of freedom, e.g., two-dimensional billiards,
chaotic underlying classical dynamics. Numerical and exWhile the more general RMT conjecture is independentt of
perimental investigations carried out on a great variety ofn this work, we present a theory which applies to hyperbolic
systems support the BGS conject{ige3]. and ergodic Hamiltonian systems with an arbitrary nuntber

In the semiclassical limit, Gutzwiller's trace formuld] ~ ©of degrees of freedorff=2). These systems are character-
provides a suitable starting point for the calculation of specized by a set of system-specific time scales, namely(the
tral correlation functions. It relates the quantum mechanicat-1) positive Lyapunov exponents. However, we will prove
density of states to a sum over classical periodic orbits whiclhat going beyond the diagonal approximation the final result
are characterized by an amplitude and a phase that is olfer the spectral form factor is independentfaind coincides
tained from the action of the orbit. A prominent example of ain a universal way with the RMT predictions.
guantum correlation function is the two-point energy-energy From an experimental point of view it is desirable to fur-
correlation function and its Fourier transform, the spectrathermore develop a theory that describes not only statistical
form factorK(7). In this case a semiclassical analysis facegproperties of the energy spectrum but also of quantum me-
the problem of evaluating a double sum over periodic orbitghanical matrix elements, as entering, for example, in cross
which requires an appropriate quantitative treatment of classections. The fluctuations of the diagonal matrix elements of
sical action correlations. Averaging the form factor of a giventhe operatorsa andb in the eigenbasis of the Hamiltonian
system over an energy window that is large compared to thean be described by a generalized form fa¢idt] K,,(7).
mean level spacing implies that only pairs of orbits with a  Similarly to the spectral form factor, one expects that
small action difference of the order df yield significant K (7) also shows universal features #s-0 and depends
contributions. The leading contribution given by the termsonly on averaged classical quantities, like the averages over
with vanishing action difference is obtained within the diag-the constant-energy surface and the time correlation function
ony approxatlofl Thie spproXimalon sccoutt 0 of the Weyl symos o and b, Anayical resuls exc

P sively based on the diagonal approximation have to some

time-reversed parter if time-reversal Sy”.‘m.e”y IS present. extent confirmed this statemefit2-15. In this work, we
Only recently a method for a systematic inclusion of cer-

. Lo . ) ) eneralize these results beyond the diagonal approximation.
tain orbit pairs with small but nonzero action differences was’ 4 9 PP

developed for systems with time-reversal symmedy7] In the following two subsections we briefly recall the
P y y Vil semiclassical theory for the form factor based on Gutzwill-

er's trace formula. In Sec. Il, we discuss the diagonal ap-
proximation and the origin of the off-diagonal corrections in
*Electronic address: marko.turek@physik.uni-regensburg.de  the special case of the spectral form factor. We then show

A. Overview

1539-3755/2005/71)/01621F15)/$23.00 016210-1 ©2005 The American Physical Society



TUREK et al. PHYSICAL REVIEW E 71, 016210(2009

how the results for two-dimensional systems can be extendetime-reversal symmetry, the relevant random-matrix en-
to higher-dimensional ones, leading once more to universakemble is the Gaussian orthogonal ensemi®@®E) and

ity and agreement with RMT predictions in the semiclassicalields the spectral form factor

limit. The matrix-element fluctuations described by the gen-

eralized form factok,(T) are then studied in Sec. lll. The ~ K(7=27=7In(1+27) =27~ 27+0(7), 0<7<1,
leading-order(diagonal approximationand next-to-leading- (5)

order terms are determined. . . . .
independent of the dimensionalitiy of the system. Here,

K(7) is expressed in terms of the rescaled tinvel /T,.
B. Generalized form factor: Definitions and main results As follows from Snirelman’s theoreml7], the corre-
sponding generalized form factor reads, to leading ordér in

Kap(7) = a(x) b(x)K(7) (6)

We introduce the weighted density of states

do(E) = t[aS(E~H)] = X (AmSE-Ey) (1)
n (see Sec. lll beloyw Here, the averaga(x) of the Weyl

for a quantum observabl This is in generalization of the SYMPola(x) of the quantum observabiis taken with re-

spectral density of states whegeis given by the identity ~SPect to the Liouville measure,

operator, i.e.a=1. In Eqg. (1), |n) are the eigenstates aig - 1

the corresponding eigenenergies of the Hamiltoiaof the a(x) = af dx &(E - H(x))a(x); (@)

system. The two-point correlation function )
see also Eq(10). The phase-space coordinates are denoted

R.(6) = 1 ale-€)ale+ by x=(q,p). In many interesting situationa(x)=hb(x)=0
abl€) = AEN\\ 2 2D 2)/ s which can always be obtained by shiftiagx) — a(x) —a(x).
This implies, according to Eq6), a vanishingK,(7) for %
—(d,(E))se(dy(E)) ) (2)  —0.Inthis case, our semiclassical methods will enable us to
BUTARTRRTIAE go beyond the result6). We will show that the correction

1 :
describes correlations between the diagonal matrix elemenf§MS 0 Eq(6) are of order 1T,~%"™" and given by

of 4 andb in the eigenbasi§n)}. In Eq. (2), (d(E)),e is the
mean density of states, given b§(E)),e=Q/(274)", where

f is the number of degrees of freedom of the system@nd
= fdx S[E-H(x)] the volume of the constant-energy surfaceHere the classical time-correlation functi@j(t) is defined
in phase space. The brackéts-),g denote a smootke.g., as
Gaussiahenergy average over an energy winddi& much

Kap(7) = FlH[ZT_ 272+ O(P)] J: dt Ct). (8

larger than the mean level spacing but classically small, i.e., Cgb(t) =a(x)b%x,) with bSx)= M 9

(d(E));L<AE<E. The mean density of states determines 2

the Heisenberg time, wherea(x)=b(x)=0 is implicitly used, 7 (q,p)~ (q,-p) is
T,y = 27H(d(E)) e 3) the time-reversal map, anq is the solution of the classical

_ _ _ _ equations of motion with initial conditiomy=x. The sym-
As shown in Ref[16], a second average is required to obtainmetrized formbS(x) of b(x) enters as the dynamics is as-

a self-averaging quantity for the Fourier transform of thesumed to be invariant with respect to time reversal.
correlation functionR,,(€). We thus introduce the form fac-

tor as a time average of the Fourier transfornRgf(e) over C. Semiclassical limit
a time window AT, with AT<Ty (for instance, AT
=27h/AE). Denoting byh(e) the Fourier transform of the
weight function in the time average, we define

In the semiclassical approach, the Weyl symbol of the

operatora,
= . a(q,p)= | dg’ & Pa'’h _a 9 , (10
KaoT) = (A(ENse f de ' Th(OR(e). (4 @p) J | <q 2|92 /- 10
- plays an important rolésee, e.g., Ref.18)). It is a function
This generalized form factor which has been introduced irof the phase-space coordinates(q,p) and tends in the
Ref. [12] will be the central quantity of this paper. For defi- |imit #— 0 to the corresponding classical observable. In the
niteness, we consider a uniform average over a time windoio|lowing we assume that(x) is a smooth function of. The
[T-AT/2,T+AT/2] implying h(e)=(eAT/2h)™  semiclassical evaluation of Eql) for classically chaotic
Xsin(eAT/2h). quantum systems yields the generalized Gutzwiller trace for-
Settingd=b=1in Egs.(2) and(4), one recovers the well- mula[19,2q
known spectral form factoK(T)=K,,(T). The correlation
function R(e) and its Fourier transforntd) have been calcu-
lated based on random-matrix assumptions. For systems withith

a

da(E) = (da(E))ag + d3°(E) (11)
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o — to the form factor in the limit of smak=T/T,<1, see Sec.
(da(ENae= —(zﬂ,h)fa(x) (12) 11 A for our corresponding results concerning the weighted
density of states.

and In the following section we first discuss the case of the

1 S spectral form factor and then generalize our approach to in-

d2*YE) = ERQ{E A, exp(i?bz)}. (13)  clude matrix element fluctuations in Sec. Il.
Y

The mean weighted density of stat€d,(E)),g, depends on

. . . . . Il. SPECTRAL FORM FACTOR FOR f-DIMENSIONAL
the dimensionalityf of the system and is determined by the SYSTEMS

average(7) of a(x) over the constant-energy surface. The
oscillatory contribution, Eq(13), is given by a sum over A. Semiclassical evaluation within the diagonal approximation

classical periodic orbits labeled by. The weightsA, are A semiclassical expression for the spectral form factor
related to the amplitudeis] K(7)=Ky4(7) is given by Eq.(16) with A, =w,, B;=w; and

(T, Ir.) expl—imu./ 2) the rescaled time=T/Ty. To leading order i and 7, the

=k = (14)  double sum over periodic orbits can be evaluated by means
V|det(M,, - 1)] of the so-called diagonal approximati@s]. It is guided by

via the relation.A,=w, A, where T, is the period of the the fact that the contributions from paifg, y) of orbits with
orbit v, r. its repetition number., its Maslov indexM, its ~ action differences larger thah strongly fluctuate in energy
stability matrix, and and are therefore suppressed upon energy averaging. Hence

the main contribution stems from the pairs of orbits with
equal actionsS =S, If the system has no other than time-
reversal symmetry then these pairs are obtaigdto acci-
dental action degeneracjdsy pairing each orbit with itself
Here, x! is the phase-space point on the periodic orpit or with its time-reversed versiog'. To calculate the corre-
obtained by solving the classical equations of motion Withsponding contribution to the semiclassical form fadtbs),
the initial conditionx,, so thatx/,; =x/. The applicability of  one has to perform a weighted periodic-orbit average of the
the semiclassical expressidid) to chaotic systems with type
more than two degrees of freedom has been extensively stud- 1
ied in Ref.[21]. == ... |w 2 _

Only the oscillating parts od,(E) andd,(E) contribute to ¢ oo sz W Fosr(T =T, (n
the correlation function(2). Substituting Eq.(13) into Eq.

(4), one obtains periodic orbits in chaotic systen&3]:
1 * . SV B 87) T T
= — — 1 1 -
KaolT) TH<EAVBV exP(' ﬁ = f i) ) == f dtf(x) =T (18)
%Y T,Jo o1 TJo

><5AT<T— T7+T7>> (16)  With T—o. On the left-hand side the arbitrary continuous
2 AE function f(x) is integrated along the periodic orbitswith
eriods T, lying in the interval[T-AT/2,T+AT/2]. The
tegral on the right-hand side of E¢L8) is taken along a
nonperiodic “ergodic” trajectory which uniformly and
densely fills the constant-energy surface. For ergodic systems

- f . . . this time average is equal to the phase-space avefagm
AT/2<T'<AT/2 and zero otherwise. The semchaSS|caIthe large T limit. In the special casé(x)=1, Eq. (18) is

Classical evalusion, I Contains & double sum over termk7I24M 25 the Hannay-0z0rio de Ameida sum 6]
) For a fixed rescaled time=T/Ty, the periodsT,, of the

which strongly fluctuate with energy and poses the challenggrbits entering Eq(16) diverge asT,=O(%) for i—0.

to approximately compute its energy average. L .
An earlier approach to this problem is presented in Ref"l'ms justifies the use of the sum rul&d) for the evaluation

[22] where the correlation functiof®) is considered directly 9f the form faFtor. S'nCWV_WV'. [see Eq(14)], the contribu-
instead of the form factor. It was shown that the off-diagonaltion of the pairs(y, y) and(y, y') to the spectral form factor,
contributions can be related to the diagonal terms yielding'€glecting all other orbit pairs, is given §]

the leading order oscillatory term of the corresponding RMT Dy — _

result ofR(e) for largee. Furthermore, it was pointed out that K1) =27 (Dpor)ae = 27 (19)

in the case of a weighted density of states these contributionBhe factor of 2 is due to the time-reversal symmetry. It is
vanish to leading semiclassical order if the microcanonicaworthwhile to note thak™(7) agrees with the leading term
average of the corresponding observable is zero. In this workf the RMT result(5) for the GOE case; correspondingly the
we proceed in a different way and restrict our consideration§SUE form factorK¥(7)=r is reproduced for systems with-

1 ("
A7=A(xg,Ty) = T—f dt a(x}). (15)
yJ0

This is achieved by means of the following sum rule for

by generalizing the corresponding steps of the semiclassic
derivation of thespectralform factor [3]. In Eq. (16), the
delta function with a finite widthg,(T’), originates from
our choice of time averaging in E4). It is equal toAT ~1 if
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FIG. 2. Configuration space representation of a periodic agrbit
with a close encounteisolid line) together with its partner orbits

D . .
FIG. 1. Representation of a periodic orhkitsolid line) in phase ¥P (dotted ling for a system with two degrees of freedom,

space with a close encounter together with its time-reverse versioand the smaller the action diﬁeren&;p—S Because the
y' (dashed lingand its partner orbiy ® (dotted line. The orbity is eriods of the orbits involved in the sufh6) are on the scale
characterized by two stretches which are almost time reverse of on%

another. One of these stretches is situated between the two Poinc %the Heisenberg tim&,, Eq. (3), one expects a large num-

surface of section$PSS perpendicular to the orbit shown by the er Obf enc;)unters on a;)glv%n qrrl?mn th;ls sutr_n. TQ%S alarge
grey squares. The time-reverse mAfs the reflection with respect number of partner ort ity ® with smal _action diiierences
to the planep=0. The picture should be thought of as a projection Sv p_SV can be associated to any periodic orpitBoth, vy

of the whole Z-dimensional phase space on a subspace formed b@nd its associated partner orlyit share the property to have
one momentum and two position coordinates. two almost time-reverse stretches, which are approximately

the same for both orbits. The partner orbit pf coincides
ith the original orbity.
All previous works[6-11] dealing with the contribution
of the pairs(y, yP) of partner orbits to the semiclassical form
factor have been restricted to systems with two degrees of
freedom. Then eithey or yP has onelor possibly several
self-intersectiofs) in configuration space, which corre-
In order to go beyond the diagonal approximation and tosponds to the encounter in phase space. The right and left
explain the agreement of the semiclassical spectral form fagarts of the orbit correspond to the two loops formed by this
tor with the RMT result(5) at higher orders irr, one has to intersection in configuration space; see Fig. 2. The right loop
evaluate further terms in the double sum over periodic orbités traversed in the same direction while the left loop is tra-
(16). Only pairs of periodic orbits which involve a small versed with different orientation, hence requiring time-
action difference of the order df interfere constructively reversal symmetry. In order that the two stretches of the orbit
and are not suppressed by the energy average. In a seriesrafar the self-intersection be almost symmetric with respect
papers 6—10| starting from the work by Sieber and Richter to time reversal, the two corresponding velocities must be
[6,7], specific periodic-orbit correlations in systems with almost antiparallel. The intersection is then characterized by
time-reversal symmetry have been investigated in order ta small crossing angle. The orbitsy and yP are distin-
compute the leading off-diagonal corrections to the semiclasguished by the fact that one has one more self-intersection
sical spectral form factor. It has been shown that, for hyperthan the othef10]. This is in contrast to the phase-space
bolic dynamics invariant under time reversal, there exists approach, in which the two partner orbits are treated on equal
continuous family of pairgy,yP) of periodic orbits with  footing. In systems with more than two degrees of freedom,
arbitrarily small action differences. These orbit pairs givethe phase-space approd@?9] is more appropriate, because
rise to a contribution oK@(7)=-272 to the spectral form for f>2 the relevant orbits generally do not have self-
factor. Hence it coincides with the next-to-leading-order termintersections in thé-dimensional configuration space.
in the RMT result(5). The idea of the approach runs as In the following subsections, we will study the spectral
follows. A periodic orbity is represented by a closed curve form factor of quantum mechanical systems whose classical
in phase space. Let us assume that this curve has twepunterparts are Hamiltonian systems witk 2 degrees of
stretches which are almost the time reverse of one anothéeedom. Furthermore, we consider systems with time-
[i.e., they are almost identical after applying the time-reverséeversal symmetry, since only in this case the orbit pairs
map 7:(q,p)—(q,—p) on one of therh In the sequel, we (y,yP) exist. We show that, if the underlying classical dy-
refer to such two almost time-reverse stretches of the grbit namics is ergodic and hyperbolic, these orbit pairs yield the
as a “close encounter” or, more shortly, an “encounter.” ThesontributionK?(7)=-272 to the semiclassical spectral form
two pieces ofy separated by the encounter are called thefactor, independent of the number of degrees of freedom.
“left part” and the “right part.” One can associate joa  Remarkably, the different time scales given by the set of
partner orbity P by inverting time on, say, the left part, leav- Lyapunov exponent§\;} do not show up in the final result
ing the right part almost unchanged. Henge follows  which coincides with the universal second-order term of the
closely the time reverse/' of y on its left part while it random-matrix theory predictiof5). Our technique strongly
follows closelyy on its right part, as shown in Fig. 1. Such a relies on the equivalence between the two approaches previ-
partner orbity P has almost the same action asMore pre-  ously developed in Ref9] and Refs[8] and[25] to count
cisely, the more symmetric the two orbit stretchesyofre  the number of partner orbits. Therefore we present a proof of
with respect to time reversal the closeni8 to eithery or ' this equivalence which clarifies the underlying dynamical

out time-reversal symmetry. Hence the diagonal approximaw
tion explains the universality of the form factor fer<1 in
the semiclassical limit.

B. Origin of the off-diagonal corrections
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mechanisms related to the partner orbit statistics. Our semlyapunov exponenti;(x) at point x via the relation
classical evaluation of the spectral form fact? () will In| Ai(t,x)| =\j(x)t. On shorter time scales one has to solve
serve as a basis for the calculation of the generalized forrthe equations of motion

factorng(T) in Sec. Ill.
dA;(t,x)
dt :Xi(xt)Ai(th)l (23)

C. Hyperbolic Hamiltonian systems

. . wherey;(x) is the local growth rate. In the following, we will
Beforg evaluating th? spectral f°.”T‘ factor we Ir]tmduceassume that the local growth rates are continuously varying

the notations by very briefly summarizing f[he necessary cong .o i phase space. In genepalx) can take negative

cepts for dynamical systenj&6]. The classical dynamics of values in some region of phase spd@8]. However, by

the system is assumed to be ergodic and hyperbolic. It MaRS godicity, its avera .(x) over the constant-energy surface
any phase-space poirt=x onto the pointx; after timet. 9 Y, 9% gy

Hyperbolicity means that all Lyapunov exponents are non!S p05|tt)|\ve tsmlce |tt|s l:aqugl tto (t.mh posmvetLyfapu_n(t)v efx-
zero except the one corresponding to the direction along thBONENtA; at aimost all pointx1.€., on a set of points o

flow [26]. For a given classical trajectory, the dynamics in tgneasure L The Lyapunov exponents of periodic orbjtee-

vicinity can be linearized using the stability mati(t,x). :c”g Ofthmia,sufrehzero in phasebsphaee in general different
The vectorsyy(x) = (8q¢ , dpg) describing a small displace- "o T1eAiS- TNEY are given by

ment from x perpendicular to the trajectdrywithin the INA(T,x)| 1 (T
constant-energy surface is given at a later tinigy N'=NxE) = T—y = T_J dtyi(x{). (24
Y yJ0
&Yi(x) = M(t,x) &Yo(X). (20

In hyperbolic systems, the set of vectd&(x),€"(x)}
This linear approximation is valid as long &g(x) remains  spans the whole PSS at Hence each displacement vector
sufficiently small. The set of all possible vectai§,(x) de-  8y(x) can be decomposed into its stable and unstable com-
fines a (2f-2)-dimensional Poincaré surface of section ponents,
(PSS at point x perpendicular to the trajectory in phase

space. The matri(t,x) is a linear map from the PSS st L L s -
to the PSS ak,. This map is symplectic, i.e., it satisfies ~ 9Y(X) = &s(X) + éyu(x)—g[s(x)g(xﬂui(x)q (x)].
MTS M=%, with -

f-1

(25

0 1
2= (_1 0), (21)  Therefore 8Y(x) is determined by the set of stable coordi-
nates{s} and unstable coordinates;}. Provided that all
where0 and 1 refer to the(f—1) X (f-1) null and identity = these coordinates;,s are small enough, the linear approxi-
matrices. Therefore the symplectic product is conserved bynation (20) can be applied for sufficiently long timessay,
the dynamics, i.e..0y] S &/ =8y, S &, for any two  up to some timeAt,>\;%(x). By Egs.(22) and(25), theith
small displacementsy, and &Y,’, provideddy, and &y,' re-  unstable component at timds then equal to its valug; at
main sufficiently small. time t=0 multiplied by A;(t,x). This leads to an exponential
The linear stable and unstable directions in the PS$ at growth of this unstable component fag|exd \;(x)t] during
are denoted byg'(x) and €'(x). They define vector fields the time A} (x)<t<At, Similar arguments hold for the
which can be found by means of a homological decomposistable components, when going backwards in time. This
tion [26] of the stability matrixM(t,x). A stretching factor implies an exponential decreasesp§o that the produai; s,

Ai(t,x) is associated to each direction. It is defined by remains constant. For timés< At,, it follows from Eq.(23)
that
M(t,x)€"(x) = A(t,x)E(xy), (22
where the signs + and — correspond to the supersariptsd du = xi(X)u; (26)
s, respectively. It is worth noting that Eq22) is not an dt

eigenvalue equation for the mati(t,x), since the vectors

&Y are evaluated at different positions in phase sﬁanehe

long-time limit, the stretching factor is related to the &
1

and similarly fors; with y; replaced by x;.
The dynamics uniquely specifies the directions of the
“(x). Due to the symplectic nature of the stability matrix
M(t,x), they have to fulfill the “orthogonality relations”
"We will specify displacement vectors in théf21) dimensional
PSS by using an arrow, e.gly, while vectors in the 2dimensional élu(X)Tzé}j(X) = éF(X)TEéjS(X) = é.u(X)TEéjS(X) =0 (279
phase space are written in boldface, exg., L u .
2Equation(22) can be viewed as an eigenvalue equation only forfOr i # j. However, the norms af!'(x) can be chosen arbi-
pointsx=x” belonging to periodic orbity and timest equal to(a  trarily. In the sequel, we choose these norms in such a way
multiple of) the periodT,. ThenM(T,,x”)=M,, is the stability ma- ~ that their symplectic product gives a classical acti®nof
trix of y atx” and|A;(T,,x”)| =exp(\/T,) gives the Lyapunov ex- the system under consideration, e.g., the action correspond-

ponents\ of the orbit. ing to the shortest periodic orbit,
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¥y | encounter region | ; f-1

(X \ty) = TXty+t, - X7 = 2 [§ (7 EXY) + u(x), 1) E'(x)].
i=1

(29)

If one moves fronx/ to x7, ,; along the orbity, this displace-
ment vector evolves according to the equations of motion
and becomesdy (X!, t) = 8Y(X{ o, ti—2At). The displace-
FIG. 3. Schemgtic dlrawing of the encounFer region_ in phasgnent éVm(Xtyyﬁ) remains small due to the deterministic na-
space. The Poincaré surface —of sectioPSS is ture of the dynamics if the timat is sufficiently short. In
(2f-2)-dimensional surface de.f'ned af in .the Z'd'mfns'onal other words, if the two orbity andy ' are close to each other
phase space by the perpendicular coordinaté, op*). The at some point in phase space, it takes them a certain finite

original orbit y is represented by the solid line. Also drawn are two time until thev have sianificantly deviated from each other
segments of the time-reversed orhit (dashed lineswhich yield they b 9 Y N o
We define the “encounter region” as the set of all points

the two closest intersection points. The corresponding “loop times” y
t are denoted byt; and t,. The displacement vectosy  Xtrat such that each stable and unstable component of the

= &y(x, 1)) points from the original orbit to the intersection points. displacement vectoyy(x{,t;) is smaller than a certain
thresholdc=<1. The value oft is chosen in such a way that
Ya(X{, 1) is given by the linearized equations of motion
Na(X{ 1) =M(AL, X)) 8Y(X{, 1) as long as/, , stays within

. ) ~ the encounter region, while the linear approximation breaks
The symmetry of the dynamics with respect to the time-gown outside of it. Therefore is a purely classical quantity
reversal operatior? implies M(t, 7x)=7M(t,x) 7, where,  \hich describes the breakdown of the linear approximation
in the r.ight-hand side, the Symbiﬂ refers to the restriction app“ed tOéy)At(Xt’yvtl)- As it will turn out, the precise value of

of the time-reversal map to the PSSxabr at7x.. It follows ¢ s not essential for the calculation of the form factor in the
that the vector€}"(x) can be chosen in such a way that, in semiclassical limit. This implies that a phase-space depen-

E0TSE(X) = Sy (27b)

addition to Eq.(279 and(27b), they satisfy dentc(x) does not alter the final result for the form factor.
Strictly speakingc also depends on the size of the encounter
E(7x) =TE&(x), &(7x)=T&"x) (283 region, since the corrections to the linear approximation

specified above should increase witkt. However, for
smooth dynamics this time dependence turns out to be weak,
i.e., logarithmic inlu;|,|s|, and one can show that it does not
affect the result for the form factgs].
Ai(t, Tx) = Ai(t,x). (28b) From the definition given above, one concludes that the
range of values oAt such thaix}; ,, lies within an encounter
The relationg273 and(27b) imply that the Jacobian matrix region is given by Ats<At<At,, whereAts, is defined as
J(x)=d(89*, opL)/d(s,u) of the transformation from the follows. Let us denote thith stable component of the time-
position/momentum coordinates to the stable/unstable coofVvolved vectordy,(x{,t) as s(At;x/,t) and similarly for
dinates in the PSS atis symplectic up to a factorS, i.e.,  the unstable components. Then Aty is such that the dis-
J(X)T2JI(x)=-S,2. Hence the Jacobian determinant of thisplacementdyy, is just about to leave the hyperculge
transformation equals-S,) . ={(s,u):|s|,|u| =c} meaning that its largest unstable com-
ponent first reaches the valaeA similar definition yields a
time At if going backwards in time, so that

and

D. Encounter region

- Y -
As it has been described in Sec. Il B the pairs of periodic izl,,_f"}?‘_l){h( Atgxl )t =c

orbits (v, yP) which interfere constructively in the double
sum (16) are related to close encounters af Each such
encounter involves two orbit stretches gefwhich are ap-
proximately time reversed with respect to each other. The i=1
purpose of this subsection is to give a more precise and o ) ) )
quantitative definition of the notion of an encounter in the Thesé implicit equations determine the timeat,
2f = 4-dimensional phase spatsee Fig. 3 =At({s};x{) andAtuzAtu({uL};xg’) as fu_nctlo_ns of the com-
Let us assume that the periodic orlyitomes close to its Ponents(s;, u;} of the vectordy(x/,t)) defined in Eq(29) and
time-reversed version' at a pointx} in phase space so that of the pointx! in phase space. The time duration of the
x{=Tx{,- In the following, we choose the tintgsuch that encounter region,
Tx{iy, lies in the PSS perpendicular to the orb!txz?(t. Thgs tendds, Ui x?) = Aty (s X)) + Atfulix?), (3D
the small displacement vector betwegrand y' lies in this
PSS and can be decomposed in terms of the stable and utius depends or} and on all the componen{s;,u;}. This
stable coordinatetsee Sec. Il time tgciS clearly invariant within a given encounter region.

and

max {|u;(At,;x?,t)|} =c. (30
(1)
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FIG. 4. PSS ax, right after partC and beforeR. The displace-
ment vectordy points from the orbity to its time-reversed version
y'. The deviation of the partner orbjt? from the original orbity is
described by the vectosXg;. Shown is only a two-dimensional
projection of the(2f —2)-dimensional PSS.

The breakdown timedtg andAt, for the linearization can
be estimated in the limifs|,|u;| <1 by using Eq.(30) and

PHYSICAL REVIEW E 71, 016210(20095

- p - P
Xpe=X{y ~X{y and Xpie=x{ —Txl. (33

The vectorssXy ; and ;i ¢ lie in the PSS defined af (see
Fig. 4), while &g  and &X,i; are in the PSS atf,,. LetR
=M(t,x{) andL=M(T -t ,xtyﬂl) be the stability matrices of
the partsk and £ of v, respectively. The stability matrix of
L' is given by L'=7L™* 7. Since the partner orbit P is
assumed to follow closely on partR andy' on partZ, one
can use the linear approximation to evaluag . and i e
as functions oféX ; and &X.:i j, respectively, i.e.,

&R,e: R&R,iy &Li,e: Li&ﬁi,i- (349

These equations determine the two single parts of the partner

orbit yP during’R and £. In addition, the relations

&R,i - éYﬁi,e: éy, &R,e_ éiﬁi,i = Tby (34b

the exponential growth of the unstable and stable compo-
nents in the forward and backward time directions, respecmake sure that the two parts fit together in the encounter

tively. With an error much smaller thaat, s themselves,

they diverge like At;=)\;"In|s?| and At,=N\.*Infu,’|

where | andk are the components for which the maximal
values are first reached. Fér>2 degrees of freedom the

presence of the maximum in E¢30) thus makes the func-
tional dependence aft, s andte, on {s,u;} rather compli-

cated, in contrast to systems with two degrees of freedom.

E. Partner orbit

region. The set of equatiori84a and(34b) can be rewritten
to give

(1-L'R K= (1+L'T)sy
and
(35

Assuming that the determinants @f-L'R) and(1-RL') do
not vanish, the system of linear equatioi¥la and (34b)
has a unique solution. This solution yields the vect®tsn

(1-RLY&K.ij=(T+R) .

Let us consider an orbity having an encounter at the terms of the displaceme®¥. Hence it characterizes the ge-
phase-space locatioq’ after timet, as described in the pre- ometry of the partner orbig P in terms of deviations fromy
vious subsection. For now we assume that the componentid y'.

{s,u} of the vectordy=ay(x/,t) are small, i.e.|s]|,|u] It is important to note that all points};,, within the en-
<1. As it will turn out in due course this is the only relevant counter region lead to the same partner ogdit This means
case for the form factor. We show, by analyzing the linearthat, when writing Eqs(348 and (34b) for position x;

ized equations of motiori20) around y or y', that there
exists another periodic orbit® which follows closelyy be-
tweent andt+t, (part R) and follows closelyy' during the

instead ofx?, the solution is just the vectaiXy ; correspond-
ing to x{ shifted along the orbit during timat and similarly
for the other vectorsX in Eq. (33). To see this, let us first

rest of the time(part £), i.e., remark that the time evolution afy betweent andt+At is
determined by the stability matrif=M(At,x]) via &ya,
=MJgy. Similar relations hold for the vectosX in Eq. (33).
The linearization of the equation of motion is, by definition,
justified within the whole encounter region. The replacement

of (x/,t) by (X%, ti—2At) thus amounts to the transforma-

X for t<t' <t+y (partR)

Ty fOr t+f=<t' <T, +t (partl).

(32 tions
Let us denote byXr ; the phase-space displacement be- N — MY,
tweeny and y P at the beginning of parR (timet); see Fig.
4. To simplify the notations, we do not write explicitly the N — MK i, Npe— (Mr)—lé)'(’RYe,

dependence of the displacement vectorsxprandt,. At the
end of partR, i.e., at timet+t,, the displacemendXy; has
changed tay, .. At the beginning and the end of patt the
displacement vectors between the time-reversed grbénd
the partner orbity P are denoted byX,i; and &Xi , respec-
tively. Here, £' indicates that one has to invert time dh
The vectorséx are given explicitly by

iy — (M) Kpij,  Keig— (M) Ko,

R— (M) 'R ML L—MLM, (36)

with M’ = M(At,xmly_At). One can easily check that the set of
equations(3439 and (34b) is invariant under these transfor-
mations. This means that the same partner optfitis ob-
. y y e
K = Xtyp—Xty, K, :Xtyj -~ tained no matter whetheq’ or x/,\, was chosen within the
: ' | encounter region.
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Let us first restrict our considerations to the case of longyeodesic flow on a Riemann surface with constant negative
partsR and £. This has to be understood in the sense thaturvature[6,7], trajectories with almost self-retracing parts
the linear approximation with respect to the evolutionsgf ~ cannot exist. IfR is contained within the encounter region,
breaks down at some time betweeandt+t, and similarly, the linear approximatiody,,=M(At,x}) 8y can be applied to
going backward in time, betwedrandt+t,—T,. This means  §y=4y(x/,t,) at least up ta\t=t,. This leads to the additional
that t,>At, and T,—t,>At,. We first note that these two equationRéy=-T4Yy besides Eq(34a and(34b). For indeed,
conditions actually imply the stronger restriction following the linearized motion arouri@, we see that, and

2At, <t <T,- 2Aty (37 Txt+t| are interchanged and reverted in time. Thf solution
(35) is thendXr ;= &Y, OXr o==T8y and Xi ;= Ki =0. This
means that if the tim¢ violates the conditior{37), the so-
lution of Eq. (348 and (34b) does not yield a new partner
“orbit but just the time-reversed orbjt. Since the orbit pairs
(y,v') are already accounted for in the diagonal approxima-
tion (19) one must only consider intersection poid¥gx;’; t;)
in the PSS which fulfill Eq(37). In other words, the lengtt
of part R must be large enough so that the linear approxi-
mation for 8y, breaks down foAt<t, and similarly for part
L. Note thatAt, and At, are large(of order\>* In|s™} and
S)\gl In|u;1|, respectively; see Sec. Il)DOf the components
{s,,u;} of 8y are small.

because the displacemeigat the beginning and the end of
partsR and L are related to each other via the time-reversal
operator7Z. Formally this can be seen as follows. The dis
placement &y = &Y (X, ar, ti—2A1) satisfies &Y, -ar==7Yar,
as is easily checked with E¢R29). Let us imagine thaf\t,
>1,/2 implying that the linear approximatiofy,;=M &Y is
still valid after x},,; reaches the middle oR. This would
imply that|é&y,; continues to increase exponentially wit
after timet;/2 until At reachesAt,. Such a statement is in
contradiction with the above-mentioned identity. This show:
that At,<t;/2 must hold. A similar argument on pad
shows the second inequality in E@7).

For a long parR fulfilling Eq. (37), the stability matrixR
in Eq. (343 is characterized by exponentially large stretch-

F. Action difference, orbit weights, and Maslov indices
ing factorsA;(x?.,t)). Substituting Eq(29) into Eqg.(35) and 9

using Eq.(28a and(28b), one thus finds The action differenc&S between the orbit and its part-
f-1 ner orbityP can be found by expanding the actionf in
N i = s = > s€(X7), part R_ in terms of y and in part{ in terms of y'. The
i=1 derivation ofASis the same as for systems with 2 degrees
of freedom[8,9]. By using the parallelogram proper($8),
-1 which is justified since; >2At, and T —t,>2At are large,
iy =Ty, = > uIx), one finds thatASis given in terms of the componen(s, u;}
i=1 of the displacemendy(x/,t,) by
f-1
X o= = ToYs=— >, s€(TXY), f-1 f-1
=1 AS=S,-S,p~ WIENGESMSJ-U;EES]- (39
f-1 )= =1
i o= = &y =— 2 UEXY). (39)
i=1

ThusAS equals the symplectic area of the parallelogram in-

This solution is correct up to first order in the small quanti-troduced in Sec. Il E; see Fig. 4. In the last two equalities in

: b\ Eq. (39, we have used Eq$27b) and (29) and define
tless anydui. Terms smaller thas andy, by a factore™ or =q5:|(S-u)- The approximatigf\(39)) is ccgrre)ct up to seggnd
— T — R - J J.

e”(7WN" have been also neglected. It means that due to thgger'in the smalls|,|u| <1. It is consistent with the con-

large lengths of both part® and L the vectorsdXz,; and et of the encounter region as it yields the same action
7Xi; describing the partner orbit have to lie very close t0itference no matter at what positiag ,, within the encoun-
the stable and the unstable |;nan|foldx§tres%ect|velj27]. ter region it is evaluated. This is due to the conservation of
Furthermore, the points/, x/ ,Txtyﬂl, and7x/,, form a par-  the symplectic product under the dynamics. As only small
allelogram in phase spa¢8,9]; see Fig. 4. action differencesAS~7# contribute significantly to the

It is important to notice that there can be a small set ofsemiclassical form factof16), the restriction of the consid-
vectorssy for which Eq.(37) does not hold. This is the case erations presented above to small componeists,|u;|
when either of the parts, s&y, is too shor{8-10]. Thenthe =~ \A/S;<1 is well justified.
orbit v and the time-reversed orbit' stay close together  Besides the two different actior®, andS, » entering the
inside the whole parR so thatR is contained within the semiclassical form factof16), one must also compare the
encounter region. This means th& is an almost self- weightsw, andw,, given by Eq.(14). These weights are
retracing part of trajectory in configuration space. This mayequal up to small corrections of first orderupands as can
happen, for example, in billiards with hard walls if one of the be shown in the following way. First of all, for any continu-
reflections is almost perpendicular to the boundd®,2§.  ous functionf(x) defined in phase space one finds, using Eq.
If there is no potential or hard wall, as in the case of the(32),
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T,p o t+ Tt
f dt’ f(x))") = f dt’ f(x7) + f dt' F(T},, )

0 t t+
(40)

with small corrections of the order ¢ |,|u;| ~ \%/S,. That PSS at ¥, PSS at x,

means that the integral over any functifi®) along the part-

ner orbit yP is approximately given by integrals along parts ~ FIG. 5. Sketch of the PSS as it is shifted along the periodic orbit
of y andy'. The corrections in Eq40) are primarily due to ¥ (solid line). Three pieces of the time-reversed orpitare repre-

the deviations of the partner orbjt? from the original orbit ~ Sénted by dashed lines. If the PSS moves with the flow in phase
y or its time-reversed versiop' within the encounter region. SPace fromx to x; all intersection points of the PSS with'
Obviously, Eq.(40) yields T,=T, for f(x)=1. Similarly, change their positions according to the linearized equations of mo-

. tion (20). Note that not onlyy' but alsoy itself could come close to
we can apply Eq(40) to the local growth rates(x)=xi(x), x}; at a later time. However, we have not include this in the sketch

which results into)\iyz)\i’p in view of Eq. (24) and of the  gpove.

identity xi(7x) =x;(x). Hence the Lyapunov exponents of the

two partner o_rblts;{ andyp_have to be almost equal. Fm_ally, orbits y P for a given orbity with the set of action differences
we can also identifyf(x) with the local change in the wind- {S} is denoted byd™IN ({SH/dS;--dS_y. This quantity is
ing number of the stable or unstable manifolds which aIIowsthe crucial ingredient yand we will show how its periodic-

for a calculation_ of_the Maslov indice{QS_a]. As the W"?O"”g orbit average can be calculated in ergodic systems with an
number of a penodp orbit has to b‘? an integer one finds th?tarbitrary number of degrees of freedom. In contrast to the
Lor smog)th dynaILm|cs, t?e Mr?SIclz/\ll |r1|de>§ Odf thefpahrtner_ O,rb'tlcase of two-dimensional systems, the derivation is signifi-

as to be exactly equal to the Maslov index of the original. v more involved because of the higher number of stable

orbit [9,10), i.e., u,=p,p. Putting these results together in j4 “nstable coordinates, Lyapunov exponents, and the
Eqg. (14), one concludes that,=w,p. In the spirit of a maximum condition(30).

sta'tiona_ry phase approximayion we thereforg keep on_ly the | ot us for a moment fix one pointon  (to simplify the
action differencedS=S,-S, » in the phase while neglecting ,¢ation, we omit here the superscripton x and choose

small differences in the pre-exponential factors in Edp). temporarily the origin of time such that=x for t=0), and
consider the PS® perpendicular to the orbit at The time-
G. Statistics of partner orbits and the spectral form reversed orbit»yi pierces throughP? many times. Some of
factor these piercings—each of it associated with a different time

In the following we show how the orbit pairgy,yP)  t—occur at pointsZx; close tox; see Figs. 3 and 5. Let
specified above determine the next-to-leading-order result,({S, u};x)d"*sd™u denote the number of such intersec-
for the spectral form factor. We assume that the dominantion points, with stable and unstable components 5gf
terms beyond the diagonal approximation in Ecf) are due ~ =7%;—X lying in intervals (s, s+ds) and (u;,u;+du), re-
to the systematic action correlations of these orbit pairs. Thuspectively. We exclude frorp, all points 7x; violating the
the double sum over periodic orbit$6) can be replaced by condition 2At,<t;<T,—2At, since they either do not exist
a single sum over the orbitgfollowed by a sum over all the at all or do not give rise to a distinct partner orbit. Thus we
partner orbitsyP of y while all other terms are neglected, have the density of valid intersection points,

ie., T ~2Atg

Y

- p({s, Ui} x) = dto([x = 7, 1))

KA(T) = ik > exp(i > Syp) , ! | 24t el
TH p h f-1

partnersy poT/ AE
(41) XTI 8(0x = T, Jui = u) 8% = Ty Js;i = 8)-
i=1
where the periodic-orbit average oveis given by Eq.(17). (43)

All partner orbitsyP of y are characterized by the set of
action difference¢S;} defined in Eq(39). Therefore, setting Here, the first delta function ensures trTargl liesin?P, i.e.,
7=T/Ty, the sum over the partner orbits in E41) can be that the coordinatéx—Txtl]H of x—TxtI in the direction par-
rewritten as an integral over tt®'s, allel to the orbit vanishes. The lower indiceandu indicate
Sul®) - the stable and unstable components of the vectors inside the
K@(7) = 7 J dS_L~~de_1<d N,({ })> square brackets. . .
Sl E) dS - dS-1/ posr, _In order to determine how many partner orbité of a
1 given fixed orbity exist with a given set of action differences
~ S {S}, one has to count the number of corresponding encounter
Xex 'Z ' (42 yegions ofy. As explained in the beginning of this section
AE each of these encounter regions can be associated to a dis-
where S,,,, stands for the maximal action difference occur- placement vectoy or to its corresponding time-evolved
ring among the pairs of partner orbits. The density of partnedy,;, —Ats<At<At,. Therefore we consider the dynamics
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s A through some faceCy with a negative normal velocity,
il encounter =xk(x{)c (with possiblyk # j). However, sincedy increases

| exponentially with time at large times, there is one more
passing ofdy through dC in the outwards directioriti> 0)
than in the inwards directiofu<0). The contributions of all
subsequent passings then mutually cancel each other in Eq.
(44). Hence, for each encounter region, only the first cross-
ing of dC at timeAt=At, is accounted for, as required. Let us
also mention that if we had taken any other closed hypersur-
face contained in the hyperculteinstead ofdC the same

FIG. 6. Schematic drawing of a projection of the Poincaré sur-_rESUIt would have been obtained. This is because the dynam-

face of sectio(PSS. The flow of intersection pointéolack filled €S conserves the number of points in phase space and thus
circles is represented by the thin arrows. For long enough time thdh€ number of vectorsy. _ _
unstable component; grows while the stable componestshrinks (i) An alternative version of E¢(44), treating all points
with §=Sysiu; being constant. There are two ways to count thewithin the encounter region on equal footing, can_be four_nd as
intersection points. Either the flux through the=c surface(dotted ~ follows. Every vectordy is counted as long as it remains
line) is considered, as in Eq44), or one counts the number of within the hypercube’. Therefore one has to include the
points in the volume of the encounter regi¢ttashed argaand  additional factor of 1t,,, since per definition31), te.c is
normalizes that by the time each point spends in there, as in E@pproximately the time each vectd§y spends within that
(45). hypercube. The density of partner orbi#4) can thus be
rewritten as

within the PSSP, at x{. It can be parametrized by means of d™IN T, [c Ul x
the stable and unstable coordinates of the different vectors SE1) :f dtJ d™1s d~tu Py ({5 U iX{)
0 -C
1

y

|
i
c uj

»N(x7,t) associated to different timeg. As the PSS is dS---dS tend {81, Ui};%{)
shifted following the phase-space flow along the onbithe f-

stable and unstable coordinates of each such vector change x(H A(Ssu; —S)). (45)
leaving only the product§=S; sju; invariant. The vector i=1

Nar=Na(Xe,t) in Py corresponding to a fixed, thus
moves, a$’,,; is shifted by increasingt, on a hyperbola as
long asx,,; remains within the encounter region, i.e., for

—At,<At<At,; see Fig. 6. Since the number of partner Or'arbitrary timet. The time duratiori,,,; of the encounter and

bits is equal to the number of gncounter regions one has NOW, o productus of the stable and unstable components of
to count each encounter region exactly once. This can bfhe vectorbV&xty,Q—Zt) are independent df as long as<’

achieved in two alternaiive ways: stays within an encounter region, i.e., whieandu; vary

(i) One can measure the flux of vectady through_the within (-c,c). The time spent by the point characterized
hypersurface defining the end of the encounter redsae by &Y(x”.t—2t) within the hypercube is approximatel
Fig. 6). According to the definition of the encounter region y Y/, ; - yp e PP =Y

qual totg,in the limit |u;|,|s | ~ VA/Sy <1, wheret,is

given in Sec. Il D, this hypersurface consists of the face arge (of order Inf). Indeed, although possible re-

*={(s,u):|s| <c,|u|<c,u==%c}, j=1,...,f-1, of the o )
oC;={(s, u) s ui Y=}, | entrances oby into C (see abovemay increase the total

hypercube C={(s,u):|s| <c,|u;] <c}. The union of all S
these faces defines (@f—3)-dimensional closed hypersur- t|me_spent bydy insideC to a V"?"“e.gfe?‘tef thfmno the
relative error made by approximating it ky,.is small.

face /C _containe(_j in the{_2f—2)—dimen_sior_1al PSS. The_cor— Using also the fact that the above-specified encounter re-
re_spondmg flux is _obtamed by T““'“p'y'”g the ge_ns;iy gions are disjoint(if they were overlapping they would
with the componeng; of the velocity of the vectopy in the define one bigger regidn it follows that the right-hand

c_iirection. hormal to oCj. Th‘? velocity is giv_en by U . side (rhs) of Eq. (45) gives approximately the density of
=x(x{)c; see Eq/(26). Integrating along the orbit we obtain ose encounter regions with respect to the action differ-

dINL({S)) T, 1 ences{S}. The result(45) then follows by integrating
— " :J di>) | d™%s d tup,({s,ub;x))x(x)c  over all possible values.

More precisely, this expression can be derived as follows
(also see the AppendixConsider first only the contribution
of the encounters af after timet,— 2t, for a fixedt, and an

dS-dSa Jo ol Actually, expression$44) and (45) are equivalent. Using
f-1 the fact that the number of vectosy is conserved by the
X [8(u; = ©) + Slu; + C)](H S(Sysu; — S))- dynami_cs, one can transform the in.tegrals over the hypersur-
i=1 face dC into an integral over the entire volume of the hyper-

(44) cube. More details on this proof of the equality between Eg.
(44) and Eq.(45) are given in the Appendix. It is important
The last product of delta functions restricts the action differ-for what follows to note that this equality still holds if the
ences to the valuegS}. It should be noted that, since the range of integration of; in Eq. (43) is replaced by the larger
local growth ratey;(x{) can take negative values for some interval (0, T,) which corresponds to the additional inclusion
timest, the vectorsy may also re-enter into the hypercuBe of intersection pointsdy that cannot be associated with a
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partner orbit. The reason for the introduction of the two dif- dIN (sh (lead Tzf‘l f-1 Sbcz
ferent expressions for the number of partner orbits is because d—yd_ ~2 13 MH In<#>. (48)
of its crucial importance from a technical point of view. We S dS-1/ por Qjz i) S|

will apply either Eq.(44) or Eq. (45 depending on which a6 \ye have used the identiey(x) =\;. If this result(48) is
Snserted into the expression for the form factd2), one
obtainsk®(7)=0 due to the energy average.

Therefore the small correction terpfi®" given in Eq.(47)

for a major simplification of the derivations to follow.
In particular, the complicated analytic structure of

tend{s;, Ui}: ), see Eqs(30) and(31), does not directly enter is of crucial importance. To determine its contribution to the

theT%aIculgti?jns. bi f the density of bi form factor, it turns out to be technically favorable to use
. e periodic-orbit average of the ensny.o partner or ItSexpressior(45) instead of Eq(44) for the density of partner
in Eq. (44) or Eq. (45 can be transformed into an average tbits. The reason is that the two appearances in Eigs.
over the constant-energy surface by means of the sum ru d(47) of t,,. mutually cancel. Inserting" from Eq. (47)
(18). After this step has been performed, the dengithasto N ' '

; ! into Eq. (45), one finds
be evaluated at arbitrary poinison a set of measure one
inside the constant-energy surface, instead of taking the d=INL(S)) \ o Tf‘l 2
pointsx{ belonging to periodic orbits as the arguments. For d—ydi =-2—]] In(%) (49)
such pointsx one can neglect classical correlations between S S-1 S

x and 7x, for 2At,<t<T-2At. This is becausey ' The result(48) together with Eq.(49) gives the correct
<At,s<T in the relevant limit|s|,|u|~VA/S;<1, T  asymptotic form of the averaged density of partners in the
~Ty~#*". More precisely, ergodicity allows one to ap- limit #— 0, 7=T/Ty fixed. Since the leading ter8) gives
proximate the time integral in Eq43) by a phase-space a vanishing contribution to the form fact¢42), only the

po,T Q i=1

average, correction(49) determines the final result,
Tuis - S S|
T-2At({s};x) - 2At,({u;}:x) KO(p) =-22—]]1 - Zf d exp(i— In| —
plfs i x) = 2T E ol 29 Mee
= - 27 (50)
X | dx'S(E-H(x"))s([x - Tx’'
f X' 0N A =71y This result is universal, i.e., it does not contain any informa-
f-1 tion about the set of Lyapunov exponefig or the constant
NIETE T Ty = ) S([x = T 15 = ). c deflnlng the encounter region. Thus as our f|_rst major result
i1 we find that the next-to-leading order correction beyond the

diagonal approximation agrees with the BGS conjecture in-
dependently of the number of degrees of freedom the system
possesses.

(46)

Since the Jacobian of the transformatidiéqt,op*)

. f_ . .
—(s,u) gives a facto§;™ this yields IIl. MATRIX ELEMENTS FLUCTUATIONS

The aim of this section is to evaluate the generalized form

p({s, u}ix) = p'*%+ p®({s;, u};x) factor K,,(T) defined in Eq.(4) based on the method devel-
fl-l fl-l oped in the previous section. This form factor describes the
:ET_EZtenc({Saui};X)- (47)  correlations of the diagonal matrix elemer(ts|a|n) and

(m|b|m), corresponding to distinct energi&;, and E,, of

Thereforep is given by a leading contribution plus a small two given quantum observablésandb. We assume tha

correction term due to the exclusion of short tiniesiolat- ~ and b have well-behaved classical limits given by smooth
ing condition (37). The corrections to the ergodic approxi- Weyl symbolsa(x) andb(x).
mation are not written in Eqg46) and (47). Although they
may be bigger thap®", one expects them to be strongly
reduced after averaging over the constant-energy surface, . o
as required by the sum rule. This is not the case for the TO zeroth order irfi, the form factor(4) is given by
I corr 1 H PR

tcr?err]?ocrtrlr?? ;Cetronr , which, as we shall see now, determines K.(T) = a(x) bOK(T). (51)

Indeed, if only the leading term®®in the density(47) is  Actually, Snirelman’s theorenj17] for classical ergodic
considered, one finds that the form facté®) vanishes in the flows implies that the Wigner functions of almost all eigen-
semiclassical limit for the following reason. A§2ddoes not  states|n) with energiesE, converging toE are uniformly
depend onx and{s;,u;}, its contribution to the density of distributed over the constant-energy surf&bte)=E in the
partner orbits can be most easily calculated by means of Egemiclassical limit. Equivalently, this means that the matrix
(44). It yields elementsn|a|n) converge to the averadé),

A. Leading term
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(njajny —a(x) as #—0,n—o suchthat E,~E.
(52)

It is worthwhile to mention that this is only true for eigen-

PHYSICAL REVIEW E 71, 016210(2009

correction has been already studied in Rgf®-15. How-
ever, we will argue below that the results of Ref$2—-15
can only be applied to observabla&<) or b(x) independent
of the momentunp. We treat here the more general case of

stategn) of the quantum Hamiltonian pertaining to a “set of smooth observables andb depending on both the position

density 1.% Heller's scars[30] are prominent examples of
“exceptional” eigenstates violating E¢2). Choosing, e.g.,
a Gaussian weight of widtAE in the energy average in Eq.
(2), one can express,,(T) for T>AT/2 as

1 1 b
K p(T) = N e n é nm b m
ab(T) (d(E))ae \"277AE2n£,m< animlm
x e IMEEThE, - E,)

_(En+En- 2E)2)

xXex
8AE?

(53)

Since all functions oE, andE, vary noticeably on the scale

g and the momentum, by following the lines of Sec. Il C of
Ref.[13].

Retaining only the contribution of those pairs obtained by
pairing each orbit with itself or with its time-reversed version
in the double sunt16), the semiclassical form factor can be

written as
1/ (T dt T
KY(T) == f 7—a(x3)< J ydf/b(xg,
TH 0 Ty 0

TY
+ f dt”b(TxZ,, ) . (56)
0 poT

AE>(d(E));L, the eigenstates not belonging to the “set of Substitutingt’=t"~t and using the periodicity of yields

density 1,” such as scars, have a negligible contribution to

the sum in Eq(53). One can then replac<m|é|n><m|6|m>

by the product(x) b(x) and move this factor out of the sum.

2 T Ty dt’
<am=2 | dt< | T—a(xﬁbS(xAt/>> (57
HJ0 poT

0 b

This yields Eq.(51), which is therefore a direct consequencewith bS(x) as given in Eq(9).

of Snirelman’s theorem.

We now assume that the classical dynamics is sufficiently

To obtain information on matrix element fluctuations, onechaotic so that the time-correlation functi¢® of the clas-

thus needs to study the semiclassical correctimest term
in power of ) to the leading behaviof51) of the form
factor. Let us define

a'=a-a(x)1, b’ =b-bX1, (54)

so that the associated Weyl symbal$x) andb’(x) average
to zero. Then the form factd€,,(T) is related toK, .,/ (T) by
the formula
Kap(T) = a(x) bOOK(T) = K (T) + a0 K ()
+b(0)Ka4(T). (55)

Comparing with Eq(51), one sees that the rhs of E5)

vanishes aé — 0. The purpose of the two next subsections is
to estimate the first term of the rhs, which turns out to be

proportional to 1T,=0O(%"1). We start with the diagonal
contribution of pairs of identical orbiténodulo time rever-

sal) to K.,/ (T) and then include the pairs of correlated orbits
(v,7P) studied in Sec. Il. We restrict our derivation to the

case of observables with vanishing mean, iaéX)=b(x)
=0 so thata=a’ andb=Db’. Therefore we shall not be con-

cerned further in this paper with the second and third term

in Eq. (55).

B. Correction term within the diagonal approximation

sical observables(x) and bS(x) decays faster than .to
zero. In strongly chaotic systems all classical correlation
functions of smooth observables decay exponentially, as a
result of a gap in the spectrum of the resonances of the
Frobenius-Perron operat¢all resonances but the one corre-
sponding to the Liouville measure are contained inside a
circle of radius strictly smaller than unity26]. The mixing
property makes sure that the time-correlation func@y(t)
tends to zero in the largelimit, but is still not strong enough
for our purpose: it does not imply th&li‘b(t) can be inte-
grated from O towo.

Applying the sum rulg18) to Eq. (57) gives

Km =2 | ar cs) (58
HJ0

in the limit #—0 with 7=T/T, fixed. If a(x) or b(x) is a
function of the positiong only, thenaS(x)=a(x) or bS(x)
=h(x), respectively. As a resuIlCaSb(t):Cab(t). In such a
case, Eq.(58) coincides with the result of Ref$12] and
[13]. In the opposite case, the me@ﬁo(t) of the correlation

gunction ofa(x) andb(x) and the correlation function @f(x)

andb(7x) must be considered.

As noted in Ref[13], some chaotic systems which fulfill
the mixing property, such as the symmetric stadium billiard,
exhibit algebraic decays of correlations int1Then the in-

Let us first consider the semiclassical correction to theegral in Eq.(58) diverges and the form factm(lb) is of order
. al

leading term(51) within the diagonal approximation. This

3More precisely, the number of eigenstates satisfying &g)
with eigenenergiek, in [E-AE,E+AE], divided by the total num-

T.! In T, instead ofT .

Let us also mention that, for chaotic dynamics, the inte-
grals [3dt a(x,) and [jdt bx,) of the observablea(x) and
bS(x) along pieces ofnonperiodi¢ trajectories of timeT,

ber of eigenstates with eigenenergies in this interval, tends to 1 ithought as function of the initial poin¢, may be often con-

the limits i — 0, (d(E)) ;L <AE<E.

sidered as Gaussian random variables with respect to the
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Liouville measure for largd@’s [26]. These random variables This is because if one exchanges the role of parend.L in
have a system-specific covarianc&/gdt C5y(t), which is  the definition(32), the corresponding partner orbit is jugt'.
thus also related to the fluctuations of the diagonal matriX@s a result, one may equivalently insé(B, p+B,pi)/2 in
elements ofi andb as given byK(T). front of the exponential in Eq(41), instead ofA B, p. The
mean (B, p+B,»i)/2 is the integral of the symmetrized ob-
servableb(x) given by Eq.(9) alongyP. It can be estimated
C. Contribution of the partner orbits by applying Eq.(40) to b¥(x) and usingbS(x)=b%(7x) to-

The contribution of the partner orbits to the semiclassica@€ther with the periodicity ofy. This yields
form factor (16) is obtained by inserting the produét, B, 1 T at’ S
of the integrals of the classical observahblg) along y and E(Byp*' Bpi) = f T_b (Xgr (59
of the observablé(x) alongy P in front of the exponential in o
Eq. (41). The forthcoming calculation is simplified by noting and reflects the fact that the two orbifsand y' explore
that if yP is a partner orbit ofy, then its time-reversed ver- almost the same phase-space regions as the two partner or-
sion y?! is also a partner orbit of, with the same action. bits P and y*'. Hence the generalization of E@L2) reads

Smax ) dINL{SY (Tydt (Tydt’
K3 (7 = f dslmds< f f —a(x )bs(xw)> 2 ) . (60
pO,TT

~SmaxE) - dS =R e

By using Eq.(44) and substituting’ —t"”=t’—t before ap- (2)
plying the sum rulg18), one finds that the leading contribu- b(7) =~ — ZT—J dt C3(1). (63)
tion p'*®9to the density in Eq(47) yields

Remarkably, one obtains for the leading off-diagonal contri-

d-IN ydt’ dt” (lead bution the same result as for the diagonal approximation,
< 2{2})1 f J )bs(xt’+t”)> with 2 replaced by -2 as in the spectral form factor. In
poT particular this means that the classical correlations enter in
of-11711-1 S.c exactly the same way via the correlation functi®g(t).
=~ 62 [Tin ( S| ) Assuming that only identical orbits modulo time-reversal
j=1i#] symmetry and pairs of partner orbitg, y ?) contribute to the
semiclassical form factofl6) up to orderr? included, this
X f dt” f dt’x;(x)alXyn) b Xprayr) (61)  yields
0 0

Kl = K@ 0| s (6

Employing ergodicity, the integral ovet’ can be approxi-
mated by a phase-space average and yields
TX,(X)fodt" b(t") Thus inserting Eq(61) into Eq. (60) as annqunced in the Introduction. This result holds_if the
g|vesK b(T =0. As in Sec. II, the contribution to the form correlation functlorC (1) decays faster than 1ast— <, in
factor Ofpleadthus vanishes. By using E(5), we obtain the order that the upper mtegratlon limit= TTH may be replaced

contribution of the small correction terpi®™ in Eq. (47), by . It is valid for observablesx and b such thata(x)
=b(x)=0 only.
dINL({(S ] ydt/ dt” < (corn) If a(x)#0 or b(x)#0, Eq. (55 must be used and the
—y_ds X)X ) ~ second and third terms in the rhs of this equation have to be
! po.T estimated. Repeating the above calculation for these terms,
S one finds that both vanish in zeroth orderfinthus being in
QTH In ( |S|| ) f dt” f dt"a(Xyn) b>(Xpmspr) accordance with Snirelman’s theorem. For instance, within
i=1

the diagonal approximation, Eq(56) gives Kgl,)l(T)
(62 =2T JMJ{rdt @' (x))por~27@'(X), Which is zero since

a’(x)=0. The leading contribution if is thus governed by
since the dependence ogd{s,u};x) in Eq. (45 and Eq. the finite-time corrections to the sum ru(&8). Similarly,
(47) mutually cancels. The averagex.»)bxu.) equals replacinga by a’ andb by 1 in Eq.(62), the second integral
the correlation functiol€5,(t”). It follows from Eq.(50) that,  in the second member becom&a’(x), which means that

ash—0, (2> /1(T)=0 up to higher-order corrections in the sum rule.

016210-13
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One concludes that our method does not allow us to estimai@nd Eq. (45), respectively. To this end we show that an
Ka1 asi—0 beyond the leading order ifi. For systems equality of the general structure
with exponential decay of classical correlation functions, it is

. .. . . T = T
not irreasonable to expect that the finite-time corrections to eyt _ > e o
the sum rulg18) are exponentially small ifi. In such a case o dtL dv‘sytv(gy,t) “Jo dt w dAsy 0(8Y,08y(55.1)
Ka1 and Ky would be negligible with respect &y, out
which is of orderi™! by Eq. (64). (A1)
IV. SUMMARY AND OUTLOOK holds under the conditions which are relevant for the statis-

tics of the number of partners. Heréy is a vector in a
In this work we presented a semiclassical evaluation omultidimensional space, e.g., tli&f—2)-dimensional PSS.
the generalized form factd€,,(7) going beyond the diagonal The volume element in this space is given o)V s
approximation. We first considered the spectral form factoL 4i-1, 415 while dA~ characterizes the surface element.
K(7)=Ka(7) for systems with more than two degrees of free-1pg |eft-hand side of EAL) thus contains an integral over
dom, i.e.,f=2. We proved that the leading contribution due any -2-dimensional volume’ in the PSS. Insid®’ we
to pairs of periodic orbits with correlated actions is indepeng|iow the time evolution of a density field(8y,t); the cor-

dent off in agreement with the RMT prediction. An impor- . e oo
tant step in our calculation was to show the equivalence be_r_espon.dmg velocity field is dgnoted WW'”- A.S Eq.(AL)
is applied to the PSS following a periodic orbit of length

tween the two different approaches for counting partne A o e
orbits which were independently developed in R and W€ can assume periodicity such thatdy,t)=e(dy,t+T)

Refs. [8,25] for two-dimensional systems. Based on theseand 8y(dy,t)=dy(dy,t+T). Due to current conservation the
results for the spectral form factor we then investigated thelensity is constant along the flow, i.@(8y,0)=g(Y;,t) or
generalized form factoK,,(7). In this case we were able to o(8Y;,t)=0. The timet,(8y,t) in Eq. (Al) is defined as the
show a universal dependencelofy(7) on the rescaled time total time a point spends in the volumif it starts at timet

7. Furthermore, we found that the contribution of the partnemt positionsy and moves until timé+T. If the volumeV is
orbits depends on the classical time-correlation functiorchosen to coincide with the hyperculfedefining the en-
C34(t) in exactly the same way as in the diagonal approxi-counter region, see Sec. Il D, thepis approximately equal
mation; see Eq64). An interesting open question is to prove to the timet,,, Eq.(31). The surface ol is decomposed as
(or disprove that this is still the case at higher ordersrior ~ dV=9V,+ 3V, Here,dVi 0. Stands for that part of the total

even for arbitrary large> 1. In such a case one could get rid syrface through which the flux defined yand &y enters or

of the error termO(7%) added toK(7) in Eq. (64). leavesV in the long-time limit, respectively. More precisely
Our semiclassical treatment of the generalized form factogpeaking, the total flux between time 0 afidhrough any

beyond the diagonal approximation can in principle be expiece ofdV,, must be positive.

tended to other physical observables containing matrix ele- For the proof of relatiorfAl) let us first consider the case

ments in chaotic systems. This includes expressions wheighere the total densitp(dy,t) is given by a single point

transition matrix elements play a rol81,33 (e.g., dipole  starting atdy, i.e., 01(8Y,t)=8(8y— &,). Then the time, is

excitations in quantum dof82]), and linear response func- given as

tions for mesoscopic systerfid34] with applications to trans-

port, magnetism, or optical response. So far, nearly all semi- . v .

classical approaches to such quantities have been relying on (Y1) :f dt’ ©y(5Yy)

the diagonal approximation, as long as additional averages !

are involved. A notable exception is the calculation of the T .

weak localization correction to the conductance in R&%], :f dt'f dVyyr 01(3y',t")

showing an important contribution of the partner orbits. It 0 i

would thus be of great interest to study the corrections to the =t,(o,0), (A2)

diagonal approximation in the various response functions ap-

pearing in mesoscopic physics. where®(8y) equals 1 iféy € V and zero otherwise. In Eq.

(A2) we made use of the periodicity of the motion. We then
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In close analogy we thus find that if the single point density
is replaced by (d8y,t)==;0,(8Y,t) which represents an arbi-
trary numbem of points given by their initial conditions then
In this appendix we prove the equality of the two different the left-hand side of EqA1l) just gives the total number of
approaches for counting the partner orbits based on(4&). particlesn that pass) during one period. But this is exactly

APPENDIX: TRANSFORMATION OF THE SURFACE
INTEGRAL INTO A VOLUME INTEGRAL
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what the right-hand side of E§A1) gives. It just measures

the outgoing flux through the surface bfbetween time 0
and T which also yields the total number of particlase-
cause the particle number is conserved.

Finally we also note that the densig(dy,t) is not re-
stricted to a sum o functions. Each of thesé functions
can also be multiplied with any functiag(dy,t) that is con-
stant when following the flow withiny, i.e., g(&yo,0)
=g(dYi,1). In the context of Sec. Il Gg could, for example,
be any function of the action difference as in EG&) and
(45). In this case the densitp entering Eq.(Al) can be
considered as a weighted densgty pg.

PHYSICAL REVIEW E 71, 016210(20095

If all local unstable growth rateg,(x) are non-negative
one can directly identifyt,,=te,. and thus the equalityAl)
means that Eq(44) exactly equals Eq(45). On the other
hand, if these local unstable growth rates assume negative
values in certain areas of the phase space then this implies
that the unstable components of a displacement vector can
also decrease oshort time scales. This would lead to a
multiple entry of the same point into the “encounter region”
characterized by=C. In this case the relatiofA1) means
that Eq.(45) is asymptotically equal to Eq44) as the length
tenc Decomes large so thdt,—te,d <te,c or similarly t,

=tenc
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