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We present a semiclassical calculation of the generalized form factorKabstd which characterizes the fluc-

tuations of matrix elements of the operatorsâ andb̂ in the eigenbasis of the Hamiltonian of a chaotic system.
Our approach is based on some recently developed techniques for the spectral form factor of systems with
hyperbolic and ergodic underlying classical dynamics andf =2 degrees of freedom, that allow us to go beyond
the diagonal approximation. First we extend these techniques to systems withf .2. Then we use these results
to calculateKabstd. We show that the dependence on the rescaled timet stime in units of the Heisenberg timed
is universal for both the spectral and the generalized form factor. Furthermore, we derive a relation between

Kabstd and the classical time-correlation function of the Weyl symbols ofâ and b̂.

DOI: 10.1103/PhysRevE.71.016210 PACS numberssd: 05.45.Mt, 03.65.Sq

I. INTRODUCTION

A. Overview

In a number of recent works the quantum spectral statis-
tics of closed chaotic systems was investigated in the semi-
classical limit. According to a conjecture by Bohigas, Gian-
noni, and Schmitf1g sBGSd, the fluctuations of the energy
levels are system independent and coincide with the predic-
tions of random-matrix theorysRMTd if the system has a
chaotic underlying classical dynamics. Numerical and ex-
perimental investigations carried out on a great variety of
systems support the BGS conjecturef2,3g.

In the semiclassical limit, Gutzwiller’s trace formulaf4g
provides a suitable starting point for the calculation of spec-
tral correlation functions. It relates the quantum mechanical
density of states to a sum over classical periodic orbits which
are characterized by an amplitude and a phase that is ob-
tained from the action of the orbit. A prominent example of a
quantum correlation function is the two-point energy-energy
correlation function and its Fourier transform, the spectral
form factorKstd. In this case a semiclassical analysis faces
the problem of evaluating a double sum over periodic orbits
which requires an appropriate quantitative treatment of clas-
sical action correlations. Averaging the form factor of a given
system over an energy window that is large compared to the
mean level spacing implies that only pairs of orbits with a
small action difference of the order of" yield significant
contributions. The leading contribution given by the terms
with vanishing action difference is obtained within the diag-
onal approximationf5g. This approximation accounts for all
orbit pairs where an orbit is associated to itself or to its
time-reversed partner if time-reversal symmetry is present.

Only recently a method for a systematic inclusion of cer-
tain orbit pairs with small but nonzero action differences was
developed for systems with time-reversal symmetryf6,7g.

This approach, originally formulated in the configuration
space, was first applied to the next-to-leading order correc-
tion of the spectral form factor of a uniformly hyperbolic
system showing agreement with the RMT predictions. In
subsequent works, extensions to a phase-space formulation
applicable to nonuniformly hyperbolic systemsf8,9g and to
higher-order correctionsf11g were proposed. However, all
these previous considerations were restricted to systems with
f =2 degrees of freedom, e.g., two-dimensional billiards,
while the more general RMT conjecture is independent off.
In this work, we present a theory which applies to hyperbolic
and ergodic Hamiltonian systems with an arbitrary numberf
of degrees of freedomsf ù2d. These systems are character-
ized by a set of system-specific time scales, namely thesf
−1d positive Lyapunov exponents. However, we will prove
that going beyond the diagonal approximation the final result
for the spectral form factor is independent off and coincides
in a universal way with the RMT predictions.

From an experimental point of view it is desirable to fur-
thermore develop a theory that describes not only statistical
properties of the energy spectrum but also of quantum me-
chanical matrix elements, as entering, for example, in cross
sections. The fluctuations of the diagonal matrix elements of

the operatorsâ and b̂ in the eigenbasis of the Hamiltonian
can be described by a generalized form factorf12g Kabstd.

Similarly to the spectral form factor, one expects that
Kabstd also shows universal features as"→0 and depends
only on averaged classical quantities, like the averages over
the constant-energy surface and the time correlation function

of the Weyl symbols ofâ and b̂. Analytical results exclu-
sively based on the diagonal approximation have to some
extent confirmed this statementf12–15g. In this work, we
generalize these results beyond the diagonal approximation.

In the following two subsections we briefly recall the
semiclassical theory for the form factor based on Gutzwill-
er’s trace formula. In Sec. II, we discuss the diagonal ap-
proximation and the origin of the off-diagonal corrections in
the special case of the spectral form factor. We then show*Electronic address: marko.turek@physik.uni-regensburg.de
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how the results for two-dimensional systems can be extended
to higher-dimensional ones, leading once more to universal-
ity and agreement with RMT predictions in the semiclassical
limit. The matrix-element fluctuations described by the gen-
eralized form factorKabsTd are then studied in Sec. III. The
leading-ordersdiagonal approximationd and next-to-leading-
order terms are determined.

B. Generalized form factor: Definitions and main results

We introduce the weighted density of states

dasEd ; trfâdsE − Ĥdg = o
n

knuâunldsE − End s1d

for a quantum observableâ. This is in generalization of the
spectral density of states whereâ is given by the identity

operator, i.e.,â=1̂. In Eq. s1d, unl are the eigenstates andEn

the corresponding eigenenergies of the HamiltonianĤ of the
system. The two-point correlation function

Rabsed ;
1

kdsEdlDE
2 SKdaSE −

e

2
DdbSE +

e

2
DL

DE

− kdasEdlDEkdbsEdlDED s2d

describes correlations between the diagonal matrix elements

of â and b̂ in the eigenbasishunlj. In Eq. s2d, kdsEdlDE is the
mean density of states, given bykdsEdlDE=V / s2p"d f, where
f is the number of degrees of freedom of the system andV
=edx dfE−Hsxdg the volume of the constant-energy surface
in phase space. The bracketsk¯lDE denote a smoothse.g.,
Gaussiand energy average over an energy windowDE much
larger than the mean level spacing but classically small, i.e.,
kdsEdlDE

−1 !DE!E. The mean density of states determines
the Heisenberg time,

TH ; 2p"kdsEdlDE. s3d

As shown in Ref.f16g, a second average is required to obtain
a self-averaging quantity for the Fourier transform of the
correlation functionRabsed. We thus introduce the form fac-
tor as a time average of the Fourier transform ofRabsed over
a time window DT, with DT!TH sfor instance, DT
=2p" /DEd. Denoting byhsed the Fourier transform of the
weight function in the time average, we define

KabsTd ; kdsEdlDEE
−`

`

de e−ieT/"hsedRabsed. s4d

This generalized form factor which has been introduced in
Ref. f12g will be the central quantity of this paper. For defi-
niteness, we consider a uniform average over a time window
fT−DT/2 ,T+DT/2g implying hsed=seDT/2"d−1

3sinseDT/2"d.
Settingâ= b̂=1̂ in Eqs.s2d ands4d, one recovers the well-

known spectral form factorKsTd;K11sTd. The correlation
function Rsed and its Fourier transforms4d have been calcu-
lated based on random-matrix assumptions. For systems with

time-reversal symmetry, the relevant random-matrix en-
semble is the Gaussian orthogonal ensemblesGOEd and
yields the spectral form factor

Kstd = 2t − t lns1 + 2td = 2t − 2t2 + Ost3d, 0 , t , 1,

s5d

independent of the dimensionalityf of the system. Here,
Kstd is expressed in terms of the rescaled timet=T/TH.

As follows from Snirelman’s theoremf17g, the corre-
sponding generalized form factor reads, to leading order in",

Kabstd . asxd bsxdKstd s6d

ssee Sec. III belowd. Here, the averageasxd of the Weyl
symbol asxd of the quantum observableâ is taken with re-
spect to the Liouville measure,

asxd ;
1

V
E dx d„E − Hsxd…asxd; s7d

see also Eq.s10d. The phase-space coordinates are denoted
by x=sq ,pd. In many interesting situationsasxd=bsxd=0
which can always be obtained by shiftingasxd→asxd−asxd.
This implies, according to Eq.s6d, a vanishingKabstd for "
→0. In this case, our semiclassical methods will enable us to
go beyond the results6d. We will show that the correction
terms to Eq.s6d are of order 1/TH," f−1 and given by

Kabstd <
1

tTH
f2t − 2t2 + Ost3dgE

0

`

dt Cab
S std. s8d

Here the classical time-correlation functionCab
S std is defined

as

Cab
S std ; asxdbSsxtd with bSsxd =

bsxd + bsTxd
2

, s9d

whereasxd=bsxd=0 is implicitly used,T : sq ,pd° sq ,−pd is
the time-reversal map, andxt is the solution of the classical
equations of motion with initial conditionx0=x. The sym-
metrized formbSsxd of bsxd enters as the dynamics is as-
sumed to be invariant with respect to time reversal.

C. Semiclassical limit

In the semiclassical approach, the Weyl symbol of the
operatorâ,

asq,pd ; E dq8 ei p·q8/"KUq −
q8

2
ULKâUq +

q8

2
UL , s10d

plays an important rolessee, e.g., Ref.f18gd. It is a function
of the phase-space coordinatesx=sq ,pd and tends in the
limit "→0 to the corresponding classical observable. In the
following we assume thatasxd is a smooth function ofx. The
semiclassical evaluation of Eq.s1d for classically chaotic
quantum systems yields the generalized Gutzwiller trace for-
mula f19,20g

dasEd = kdasEdlDE + da
oscsEd s11d

with
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kdasEdlDE =
V

s2p"d f asxd s12d

and

da
oscsEd =

1

p"
ReHo

g

Ag expSi
Sg

"
DJ . s13d

The mean weighted density of states,kdasEdlDE, depends on
the dimensionalityf of the system and is determined by the
averages7d of asxd over the constant-energy surface. The
oscillatory contribution, Eq.s13d, is given by a sum over
classical periodic orbits labeled byg. The weightsAg are
related to the amplitudesf4g

wg =
sTg /rgd exps− ipmg / 2d

ÎudetsMg − 1du
s14d

via the relationAg=wg Ag, where Tg is the period of the
orbit g, rg its repetition number,mg its Maslov index,Mg its
stability matrix, and

Ag = Asx0
g,Tgd ;

1

Tg
E

0

Tg

dt asxt
gd. s15d

Here, xt
g is the phase-space point on the periodic orbitg

obtained by solving the classical equations of motion with
the initial conditionx0, so thatxt+Tg

g =xt
g. The applicability of

the semiclassical expressions13d to chaotic systems with
more than two degrees of freedom has been extensively stud-
ied in Ref.f21g.

Only the oscillating parts ofdasEd anddbsEd contribute to
the correlation functions2d. Substituting Eq.s13d into Eq.
s4d, one obtains

KabsTd =
1

TH
Ko

g,ḡ

AgBḡ
* expSi

Sg − Sḡ

"
D

3dDTST −
Tg + Tḡ

2
DL

DE

s16d

by generalizing the corresponding steps of the semiclassical
derivation of thespectral form factor f3g. In Eq. s16d, the
delta function with a finite width,dDTsT8d, originates from
our choice of time averaging in Eq.s4d. It is equal toDT −1 if
−DT/2øT8øDT/2 and zero otherwise. The semiclassical
formula s16d of KabsTd is the starting point of a further semi-
classical evaluation. It contains a double sum over terms
which strongly fluctuate with energy and poses the challenge
to approximately compute its energy average.

An earlier approach to this problem is presented in Ref.
f22g where the correlation functions2d is considered directly
instead of the form factor. It was shown that the off-diagonal
contributions can be related to the diagonal terms yielding
the leading order oscillatory term of the corresponding RMT
result ofRsed for largee. Furthermore, it was pointed out that
in the case of a weighted density of states these contributions
vanish to leading semiclassical order if the microcanonical
average of the corresponding observable is zero. In this work
we proceed in a different way and restrict our considerations

to the form factor in the limit of smallt=T/TH!1, see Sec.
III A for our corresponding results concerning the weighted
density of states.

In the following section we first discuss the case of the
spectral form factor and then generalize our approach to in-
clude matrix element fluctuations in Sec. III.

II. SPECTRAL FORM FACTOR FOR f-DIMENSIONAL
SYSTEMS

A. Semiclassical evaluation within the diagonal approximation

A semiclassical expression for the spectral form factor
Kstd=K11std is given by Eq.s16d with Ag=wg, Bḡ=wḡ and
the rescaled timet=T/TH. To leading order in" andt, the
double sum over periodic orbits can be evaluated by means
of the so-called diagonal approximationf5g. It is guided by
the fact that the contributions from pairssg ,ḡd of orbits with
action differences larger than" strongly fluctuate in energy
and are therefore suppressed upon energy averaging. Hence
the main contribution stems from the pairs of orbits with
equal actionsSg=Sḡ. If the system has no other than time-
reversal symmetry then these pairs are obtainedsup to acci-
dental action degeneraciesd by pairing each orbitg with itself
or with its time-reversed versiong i. To calculate the corre-
sponding contribution to the semiclassical form factors16d,
one has to perform a weighted periodic-orbit average of the
type

k¯lpo,T ;
1

To
g

¯ uwgu2dDTsT − Tgd. s17d

This is achieved by means of the following sum rule for
periodic orbits in chaotic systemsf23g:

K 1

Tg
E

0

Tg

dt fsxt
gdL

po,T

.
1

T
E

0

T

dt fsxtd . fsxd s18d

with T→`. On the left-hand side the arbitrary continuous
function fsxd is integrated along the periodic orbitsg with
periods Tg lying in the interval fT−DT/2 ,T+DT/2g. The
integral on the right-hand side of Eq.s18d is taken along a
nonperiodic “ergodic” trajectory which uniformly and
densely fills the constant-energy surface. For ergodic systems
this time average is equal to the phase-space averagefsxd in
the largeT limit. In the special casefsxd=1, Eq. s18d is
known as the Hannay–Ozorio de Almeida sum rulef24g.

For a fixed rescaled timet=T/TH, the periodsTg of the
orbits entering Eq.s16d diverge asTH=Os"1−fd for "→0.
This justifies the use of the sum rules18d for the evaluation
of the form factor. Sincewg=wg i fsee Eq.s14dg, the contribu-
tion of the pairssg ,gd andsg ,g id to the spectral form factor,
neglecting all other orbit pairs, is given byf5g

Ks1dstd = 2t kk1lpo,TlDE . 2t. s19d

The factor of 2 is due to the time-reversal symmetry. It is
worthwhile to note thatKs1dstd agrees with the leading term
of the RMT results5d for the GOE case; correspondingly the
GUE form factorKs1dstd=t is reproduced for systems with-
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out time-reversal symmetry. Hence the diagonal approxima-
tion explains the universality of the form factor fort!1 in
the semiclassical limit.

B. Origin of the off-diagonal corrections

In order to go beyond the diagonal approximation and to
explain the agreement of the semiclassical spectral form fac-
tor with the RMT results5d at higher orders int, one has to
evaluate further terms in the double sum over periodic orbits
s16d. Only pairs of periodic orbits which involve a small
action difference of the order of" interfere constructively
and are not suppressed by the energy average. In a series of
papersf6–10g starting from the work by Sieber and Richter
f6,7g, specific periodic-orbit correlations in systems with
time-reversal symmetry have been investigated in order to
compute the leading off-diagonal corrections to the semiclas-
sical spectral form factor. It has been shown that, for hyper-
bolic dynamics invariant under time reversal, there exists a
continuous family of pairssg ,g pd of periodic orbits with
arbitrarily small action differences. These orbit pairs give
rise to a contribution ofKs2dstd=−2t 2 to the spectral form
factor. Hence it coincides with the next-to-leading-order term
in the RMT results5d. The idea of the approach runs as
follows. A periodic orbitg is represented by a closed curve
in phase space. Let us assume that this curve has two
stretches which are almost the time reverse of one another
fi.e., they are almost identical after applying the time-reverse
map T : sq ,pd° sq ,−pd on one of themg. In the sequel, we
refer to such two almost time-reverse stretches of the orbitg
as a “close encounter” or, more shortly, an “encounter.” The
two pieces ofg separated by the encounter are called the
“left part” and the “right part.” One can associate tog a
partner orbitg p by inverting time on, say, the left part, leav-
ing the right part almost unchanged. Henceg p follows
closely the time reverseg i of g on its left part while it
follows closelyg on its right part, as shown in Fig. 1. Such a
partner orbitg p has almost the same action asg. More pre-
cisely, the more symmetric the two orbit stretches ofg are
with respect to time reversal the closer isg p to eitherg or g i

and the smaller the action differenceSg p−Sg. Because the
periods of the orbits involved in the sums16d are on the scale
of the Heisenberg timeTH, Eq. s3d, one expects a large num-
ber of encounters on a given orbitg in this sum. Thus a large
number of partner orbitsg p with small action differences
Sg p−Sg can be associated to any periodic orbitg. Both, g
and its associated partner orbitg p share the property to have
two almost time-reverse stretches, which are approximately
the same for both orbits. The partner orbit ofg p coincides
with the original orbitg.

All previous worksf6–11g dealing with the contribution
of the pairssg ,g pd of partner orbits to the semiclassical form
factor have been restricted to systems with two degrees of
freedom. Then eitherg or g p has onesor possibly severald
self-intersectionssd in configuration space, which corre-
sponds to the encounter in phase space. The right and left
parts of the orbit correspond to the two loops formed by this
intersection in configuration space; see Fig. 2. The right loop
is traversed in the same direction while the left loop is tra-
versed with different orientation, hence requiring time-
reversal symmetry. In order that the two stretches of the orbit
near the self-intersection be almost symmetric with respect
to time reversal, the two corresponding velocities must be
almost antiparallel. The intersection is then characterized by
a small crossing angle«. The orbitsg and g p are distin-
guished by the fact that one has one more self-intersection
than the otherf10g. This is in contrast to the phase-space
approach, in which the two partner orbits are treated on equal
footing. In systems with more than two degrees of freedom,
the phase-space approachf8,9g is more appropriate, because
for f .2 the relevant orbits generally do not have self-
intersections in thef-dimensional configuration space.

In the following subsections, we will study the spectral
form factor of quantum mechanical systems whose classical
counterparts are Hamiltonian systems withf ù2 degrees of
freedom. Furthermore, we consider systems with time-
reversal symmetry, since only in this case the orbit pairs
sg ,g pd exist. We show that, if the underlying classical dy-
namics is ergodic and hyperbolic, these orbit pairs yield the
contributionKs2dstd=−2t 2 to the semiclassical spectral form
factor, independent of the number of degrees of freedom.
Remarkably, the different time scales given by the set of
Lyapunov exponentshlij do not show up in the final result
which coincides with the universal second-order term of the
random-matrix theory predictions5d. Our technique strongly
relies on the equivalence between the two approaches previ-
ously developed in Ref.f9g and Refs.f8g and f25g to count
the number of partner orbits. Therefore we present a proof of
this equivalence which clarifies the underlying dynamical

FIG. 1. Representation of a periodic orbitg ssolid lined in phase
space with a close encounter together with its time-reverse version
g i sdashed lined and its partner orbitg p sdotted lined. The orbitg is
characterized by two stretches which are almost time reverse of one
another. One of these stretches is situated between the two Poincaré
surface of sectionssPSSd perpendicular to the orbit shown by the
grey squares. The time-reverse mapT is the reflection with respect
to the planep=0. The picture should be thought of as a projection
of the whole 2f-dimensional phase space on a subspace formed by
one momentum and two position coordinates.

FIG. 2. Configuration space representation of a periodic orbitg
with a close encounterssolid lined together with its partner orbits
g p sdotted lined for a system with two degrees of freedom.
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mechanisms related to the partner orbit statistics. Our semi-
classical evaluation of the spectral form factorKs2dstd will
serve as a basis for the calculation of the generalized form
factor Kab

s2dstd in Sec. III.

C. Hyperbolic Hamiltonian systems

Before evaluating the spectral form factor we introduce
the notations by very briefly summarizing the necessary con-
cepts for dynamical systemsf26g. The classical dynamics of
the system is assumed to be ergodic and hyperbolic. It maps
any phase-space pointx0=x onto the pointxt after time t.
Hyperbolicity means that all Lyapunov exponents are non-
zero except the one corresponding to the direction along the
flow f26g. For a given classical trajectory, the dynamics in its
vicinity can be linearized using the stability matrixMst ,xd.
The vectordyW0sxd;sdq0

' ,dp0
'd describing a small displace-

ment from x perpendicular to the trajectory1 within the
constant-energy surface is given at a later timet by

dyW tsxd < Mst,xddyW0sxd. s20d

This linear approximation is valid as long asdyW tsxd remains
sufficiently small. The set of all possible vectorsdyW0sxd de-
fines a s2f −2d-dimensional Poincaré surface of section
sPSSd at point x perpendicular to the trajectory in phase
space. The matrixMst ,xd is a linear map from the PSS atx
to the PSS atxt. This map is symplectic, i.e., it satisfies
MT S M =S, with

S = S 0 1

− 1 0
D , s21d

where0 and 1 refer to thesf −1d3 sf −1d null and identity
matrices. Therefore the symplectic product is conserved by
the dynamics, i.e.,dyW t

T S dyW t8<dyW0
T S dyW08 for any two

small displacementsdyW0 anddyW08, provideddyW t anddyW t8 re-
main sufficiently small.

The linear stable and unstable directions in the PSS atx
are denoted byeW i

ssxd and eW i
usxd. They define vector fields

which can be found by means of a homological decomposi-
tion f26g of the stability matrixMst ,xd. A stretching factor
List ,xd is associated to each direction. It is defined by

Mst,xdeW i
u,ssxd = List,xd±1eW i

u,ssxtd, s22d

where the signs + and − correspond to the superscriptsu and
s, respectively. It is worth noting that Eq.s22d is not an
eigenvalue equation for the matrixMst ,xd, since the vectors
eWs,u are evaluated at different positions in phase space.2 In the
long-time limit, the stretching factor is related to the

Lyapunov exponentlisxd at point x via the relation
ln uList ,xd u <lisxdt. On shorter time scales one has to solve
the equations of motion

dList,xd
dt

= xisxtdList,xd, s23d

wherexisxd is the local growth rate. In the following, we will
assume that the local growth rates are continuously varying
functions in phase space. In general,xisxd can take negative
values in some region of phase spacef26g. However, by
ergodicity, its averagexisxd over the constant-energy surface
is positive since it is equal to theith positive Lyapunov ex-
ponentli at almost all pointsx si.e., on a set of pointsx of
measure 1d. The Lyapunov exponents of periodic orbitssbe-
ing of measure zero in phase spaced are in general different
from theli’s. They are given by

li
g ; lisx0

gd =
lnuLisTg,x0

gdu
Tg

=
1

Tg
E

0

Tg

dtxisxt
gd. s24d

In hyperbolic systems, the set of vectorsheW i
ssxd ,eW i

usxdj
spans the whole PSS atx. Hence each displacement vector
dyWsxd can be decomposed into its stable and unstable com-
ponents,

dyWsxd ; dyWssxd + dyWusxd = o
i=1

f−1

fsisxdeW i
ssxd + uisxdeW i

usxdg.

s25d

ThereforedyWsxd is determined by the set of stable coordi-
nates hsij and unstable coordinateshuij. Provided that all
these coordinatesui ,si are small enough, the linear approxi-
mations20d can be applied for sufficiently long timest, say,
up to some timeDtu@li

−1sxd. By Eqs.s22d ands25d, the ith
unstable component at timet is then equal to its valueui at
time t=0 multiplied byList ,xd. This leads to an exponential
growth of this unstable component asuui uexpflisxdtg during
the time li

−1sxd! tøDtu. Similar arguments hold for the
stable componentssi when going backwards in time. This
implies an exponential decrease ofsi so that the productui si
remains constant. For timestøDtu, it follows from Eq.s23d
that

dui

dt
= xisxtdui s26d

and similarly forsi with xi replaced by −xi.
The dynamics uniquely specifies the directions of the

eW i
s,usxd. Due to the symplectic nature of the stability matrix

Mst ,xd, they have to fulfill the “orthogonality relations”

eW i
usxdTSeW j

usxd = eW i
ssxdTSeW j

ssxd = eW i
usxdTSeW j

ssxd = 0 s27ad

for i Þ j . However, the norms ofeW i
s,usxd can be chosen arbi-

trarily. In the sequel, we choose these norms in such a way
that their symplectic product gives a classical actionScl of
the system under consideration, e.g., the action correspond-
ing to the shortest periodic orbit,

1We will specify displacement vectors in the 2sf-1d dimensional
PSS by using an arrow, e.g.,dyW, while vectors in the 2f-dimensional
phase space are written in boldface, e.g.,x.

2Equations22d can be viewed as an eigenvalue equation only for
pointsx=xg belonging to periodic orbitsg and timest equal tosa
multiple ofd the periodTg. ThenMsTg ,xgd=Mg is the stability ma-
trix of g at xg and uLisTg ,xgd u =expsli

gTgd gives the Lyapunov ex-
ponentsli

g of the orbit.
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eW i
usxdTSeW j

ssxd = Scldi j . s27bd

The symmetry of the dynamics with respect to the time-
reversal operationT implies Mst ,Txtd=TMst ,xd−1T, where,
in the right-hand side, the symbolT refers to the restriction
of the time-reversal map to the PSS atx or atTxt. It follows
that the vectorseW i

s,usxd can be chosen in such a way that, in
addition to Eq.s27ad and s27bd, they satisfy

eW i
usTxd = T eW i

ssxd, eW i
ssTxd = T eW i

usxd s28ad

and

List,Txtd = List,xd. s28bd

The relationss27ad ands27bd imply that the Jacobian matrix
Jsxd=]sdq' ,dp'd /]ssi ,uid of the transformation from the
position/momentum coordinates to the stable/unstable coor-
dinates in the PSS atx is symplectic up to a factor −Scl, i.e.,
JsxdTSJsxd=−SclS. Hence the Jacobian determinant of this
transformation equalss−Scld f−1.

D. Encounter region

As it has been described in Sec. II B the pairs of periodic
orbits sg ,g pd which interfere constructively in the double
sum s16d are related to close encounters ofg. Each such
encounter involves two orbit stretches ofg which are ap-
proximately time reversed with respect to each other. The
purpose of this subsection is to give a more precise and
quantitative definition of the notion of an encounter in the
2f ù4-dimensional phase spacessee Fig. 3d.

Let us assume that the periodic orbitg comes close to its
time-reversed versiong i at a pointxt

g in phase space so that
xt

g.Txt+tl
g . In the following, we choose the timetl such that

Txt+tl
g lies in the PSS perpendicular to the orbit atxt

g. Thus
the small displacement vector betweeng andg i lies in this
PSS and can be decomposed in terms of the stable and un-
stable coordinatesssee Sec. II Cd,

dyWsxt
g,tld = Txt+tl

g − xt
g = o

i=1

f−1

fsisxt
g,tldeW i

ssxt
gd + uisxt

g,tldeW i
usxt

gdg.

s29d

If one moves fromxt
g to xt+Dt

g along the orbitg, this displace-
ment vector evolves according to the equations of motion
and becomesdyWDtsxt

g ,tld=dyWsxt+Dt
g ,tl −2Dtd. The displace-

ment dyWDtsxt
g ,tld remains small due to the deterministic na-

ture of the dynamics if the timeDt is sufficiently short. In
other words, if the two orbitsg andg i are close to each other
at some point in phase space, it takes them a certain finite
time until they have significantly deviated from each other.

We define the “encounter region” as the set of all points
xt+Dt

g such that each stable and unstable component of the
displacement vectordyWDtsxt

g ,tld is smaller than a certain
thresholdc&1. The value ofc is chosen in such a way that
dyWDtsxt

g ,tld is given by the linearized equations of motion
dyWDtsxt

g ,tld<MsDt ,xt
gddyWsxt

g ,tld as long asxt+Dt
g stays within

the encounter region, while the linear approximation breaks
down outside of it. Thereforec is a purely classical quantity
which describes the breakdown of the linear approximation
applied todyWDtsxt

g ,tld. As it will turn out, the precise value of
c is not essential for the calculation of the form factor in the
semiclassical limit. This implies that a phase-space depen-
dent csxd does not alter the final result for the form factor.
Strictly speaking,c also depends on the size of the encounter
region, since the corrections to the linear approximation
specified above should increase withDt. However, for
smooth dynamics this time dependence turns out to be weak,
i.e., logarithmic inuui u , usiu, and one can show that it does not
affect the result for the form factorf8g.

From the definition given above, one concludes that the
range of values ofDt such thatxt+Dt

g lies within an encounter
region is given by −DtsøDtøDtu, whereDts,u is defined as
follows. Let us denote theith stable component of the time-
evolved vectordyWDtsxt

g ,tld as sisDt ;xt
g ,tld and similarly for

the unstable componentsui. Then Dtu is such that the dis-
placementdyWDtu

is just about to leave the hypercubeC
=hssi ,uid : usi u , uui u øcj meaning that its largest unstable com-
ponent first reaches the valuec. A similar definition yields a
time Dts if going backwards in time, so that

max
i=1,. . .,sf−1d

husis− Dts;xt
g,tlduj = c

and

max
i=1,. . .,sf−1d

huuisDtu;xt
g,tlduj = c. s30d

These implicit equations determine the timesDts
=Dtsshsij ;xt

gd andDtu=Dtushuij ;xt
gd as functions of the com-

ponentshsi ,uij of the vectordyWsxt
g ,tld defined in Eq.s29d and

of the point xt
g in phase space. The time duration of the

encounter region,

tencshsi,uij;xt
gd = Dtushsij;xt

gd + Dtsshuij;xt
gd, s31d

thus depends onxt
g and on all the componentshsi ,uij. This

time tenc is clearly invariant within a given encounter region.

FIG. 3. Schematic drawing of the encounter region in phase
space. The Poincaré surface of sectionsPSSd is a
s2f −2d-dimensional surface defined atxt

g in the 2f-dimensional
phase space by the perpendicular coordinatessdq' ,dp'd. The
original orbitg is represented by the solid line. Also drawn are two
segments of the time-reversed orbitg i sdashed linesd which yield
the two closest intersection points. The corresponding “loop times”
tl are denoted bytl1 and tl2. The displacement vectordyW
=dyWsxt

g ,tld points from the original orbit to the intersection points.
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The breakdown timesDts andDtu for the linearization can
be estimated in the limitusi u , uui u !1 by using Eq.s30d and
the exponential growth of the unstable and stable compo-
nents in the forward and backward time directions, respec-
tively. With an error much smaller thanDtu,s themselves,
they diverge like Dts<l j

−1 ln usj
−1u and Dtu<lk

−1 ln uuk
−1u

where j and k are the components for which the maximal
values are first reached. Forf .2 degrees of freedom the
presence of the maximum in Eq.s30d thus makes the func-
tional dependence ofDtu,s and tenc on hsi ,uij rather compli-
cated, in contrast to systems with two degrees of freedom.

E. Partner orbit

Let us consider an orbitg having an encounter at the
phase-space locationxt

g after timetl as described in the pre-
vious subsection. For now we assume that the components
hsi ,uij of the vectordyW =dyWsxt

g ,tld are small, i.e.,usi u , uui u
!1. As it will turn out in due course this is the only relevant
case for the form factor. We show, by analyzing the linear-
ized equations of motions20d around g or g i, that there
exists another periodic orbitg p which follows closelyg be-
tweent and t+ tl spart Rd and follows closelyg i during the
rest of the timespart Ld, i.e.,

xt8
g p

.Hxt8
g

for t ø t8 , t + tl spartRd

Tx2t+tl−t8
g

for t + tl ø t8 , Tg + t spartLd.

s32d

Let us denote bydxWR,i the phase-space displacement be-
tweeng andg p at the beginning of partR stime td; see Fig.
4. To simplify the notations, we do not write explicitly the
dependence of the displacement vectors onxt

g and tl. At the
end of partR, i.e., at timet+ tl, the displacementdxWR,i has
changed todxWR,e. At the beginning and the end of partL, the
displacement vectors between the time-reversed orbitg i and
the partner orbitg p are denoted bydxWLi,i anddxWLi,e, respec-
tively. Here,Li indicates that one has to invert time onL.
The vectorsdxW are given explicitly by

dxWR,i = xt
g p

− xt
g, dxWLi,i = xt+tl

g p
− Txt

g,

dxWR,e = xt+tl
g p

− xt+tl
g and dxWLi,e = xt

g p
− Txt+tl

g . s33d

The vectorsdxWR,i anddxWLi,e lie in the PSS defined atxt
g ssee

Fig. 4d, while dxWR,e and dxWLi,i are in the PSS atxt+tl
g . Let R

=Mstl ,xt
gd andL=MsTg− tl ,xt+tl

g d be the stability matrices of
the partsR andL of g, respectively. The stability matrix of
Li is given by Li =T L−1 T. Since the partner orbitg p is
assumed to follow closelyg on partR andg i on partL, one
can use the linear approximation to evaluatedxWR,e anddxWLi,e

as functions ofdxWR,i anddxWLi,i, respectively, i.e.,

dxWR,e = RdxWR,i, dxWLi,e = LidxWLi,i . s34ad

These equations determine the two single parts of the partner
orbit g p during R andL. In addition, the relations

dxWR,i − dxWLi,e = dyW, dxWR,e − dxWLi,i = − TdyW s34bd

make sure that the two parts fit together in the encounter
region. The set of equationss34ad ands34bd can be rewritten
to give

s1 − LiRddxWR,i = s1 + LiTddyW

and

s1 − RLiddxWLi,i = sT + RddyW . s35d

Assuming that the determinants ofs1−LiRd ands1−RLid do
not vanish, the system of linear equationss34ad and s34bd
has a unique solution. This solution yields the vectorsdxW in
terms of the displacementdyW. Hence it characterizes the ge-
ometry of the partner orbitg p in terms of deviations fromg
andg i.

It is important to note that all pointsxt+Dt
g within the en-

counter region lead to the same partner orbitg p. This means
that, when writing Eqs.s34ad and s34bd for position xt+Dt

g

instead ofxt
g, the solution is just the vectordxWR,i correspond-

ing to xt
g shifted along the orbit during timeDt and similarly

for the other vectorsdxW in Eq. s33d. To see this, let us first
remark that the time evolution ofdyW betweent and t+Dt is
determined by the stability matrixM =MsDt ,xt

gd via dyWDt

=MdyW. Similar relations hold for the vectorsdxW in Eq. s33d.
The linearization of the equation of motion is, by definition,
justified within the whole encounter region. The replacement
of sxt

g ,tld by sxt+Dt
g ,tl −2Dtd thus amounts to the transforma-

tions

dyW → MdyW ,

dxWR,i → MdxWR,i, dxWR,e → sM8d−1dxWR,e,

dxWLi,i → sMid−1dxWLi,i, dxWLi,e → sM8didxWLi,e,

R→ sM8d−1R M−1, L → MLM8, s36d

with M8=MsDt ,xt+tl
g−Dtd. One can easily check that the set of

equationss34ad and s34bd is invariant under these transfor-
mations. This means that the same partner orbitg p is ob-
tained no matter whetherxt

g or xt+Dt
g was chosen within the

encounter region.

FIG. 4. PSS atxt right after partL and beforeR. The displace-
ment vectordyW points from the orbitg to its time-reversed version
g i. The deviation of the partner orbitg p from the original orbitg is
described by the vectordxWR,i. Shown is only a two-dimensional
projection of thes2f −2d-dimensional PSS.
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Let us first restrict our considerations to the case of long
partsR andL. This has to be understood in the sense that
the linear approximation with respect to the evolution ofdyW
breaks down at some time betweent and t+ tl and similarly,
going backward in time, betweent andt+ tl −Tg. This means
that tl .Dtu and Tg− tl .Dts. We first note that these two
conditions actually imply the stronger restriction

2Dtu , tl , Tg − 2Dts s37d

because the displacementsdyW at the beginning and the end of
partsR andL are related to each other via the time-reversal
operatorT. Formally this can be seen as follows. The dis-
placementdyWDt=dyWsxt+Dt

g ,tl −2Dtd satisfies dyW tl−Dt=−TdyWDt,
as is easily checked with Eq.s29d. Let us imagine thatDtu
. tl /2 implying that the linear approximationdyWDt=MdyW is
still valid after xt+Dt

g reaches the middle ofR. This would
imply that udyWDtu continues to increase exponentially withDt
after time tl /2 until Dt reachesDtu. Such a statement is in
contradiction with the above-mentioned identity. This shows
that Dtu, tl /2 must hold. A similar argument on partL
shows the second inequality in Eq.s37d.

For a long partR fulfilling Eq. s37d, the stability matrixR
in Eq. s34ad is characterized by exponentially large stretch-
ing factorsLisxt

g ,tld. Substituting Eq.s29d into Eq. s35d and
using Eq.s28ad and s28bd, one thus finds

dxWR,i = dyWs = o
i=1

f−1

sieW i
ssxt

gd,

dxWLi,i = TdyWu = o
i=1

f−1

uieW i
ssTxt

gd,

dxWR,e = − TdyWs = − o
i=1

f−1

sieW i
usTxt

gd,

dxWLi,e = − dyWu = − o
i=1

f−1

uieW i
usxt

gd. s38d

This solution is correct up to first order in the small quanti-

tiessi andui. Terms smaller thansi andui by a factore−tlli
g

or

e−sTg−tldli
g

have been also neglected. It means that due to the
large lengths of both partsR and L the vectorsdxWR,i and
TdxWLi,i describing the partner orbit have to lie very close to
the stable and the unstable manifolds atxt

g, respectivelyf27g.
Furthermore, the pointsxt

g, xt
g p

, Txt+tl
g , andTxt+tl

g p
form a par-

allelogram in phase spacef8,9g; see Fig. 4.
It is important to notice that there can be a small set of

vectorsdyW for which Eq.s37d does not hold. This is the case
when either of the parts, sayR, is too shortf8–10g. Then the
orbit g and the time-reversed orbitg i stay close together
inside the whole partR so thatR is contained within the
encounter region. This means thatR is an almost self–
retracing part of trajectory in configuration space. This may
happen, for example, in billiards with hard walls if one of the
reflections is almost perpendicular to the boundaryf10,28g.
If there is no potential or hard wall, as in the case of the

geodesic flow on a Riemann surface with constant negative
curvaturef6,7g, trajectories with almost self-retracing parts
cannot exist. IfR is contained within the encounter region,
the linear approximationdyWDt=MsDt ,xt

gddyW can be applied to
dyW =dyWsxt

g ,tld at least up toDt= tl. This leads to the additional
equationRdyW =−TdyW besides Eq.s34ad ands34bd. For indeed,
following the linearized motion aroundR, we see thatxt and
Txt+tl

are interchanged and reverted in time. The solution

s35d is thendxWR,i =dyW, dxWR,e=−TdyW anddxWLi,i =dxWLi,e=0W. This
means that if the timetl violates the conditions37d, the so-
lution of Eq. s34ad and s34bd does not yield a new partner
orbit but just the time-reversed orbitg i. Since the orbit pairs
sg ,g id are already accounted for in the diagonal approxima-
tion s19d one must only consider intersection pointsdyWsxt

g ; tld
in the PSS which fulfill Eq.s37d. In other words, the lengthtl
of part R must be large enough so that the linear approxi-
mation fordyWDt breaks down forDt, tl and similarly for part
L. Note thatDts and Dtu are largesof orderl j

−1 ln usj
−1u and

lk
−1 ln uuk

−1u, respectively; see Sec. II Dd if the components
hsi ,uij of dyW are small.

F. Action difference, orbit weights, and Maslov indices

The action differenceDS between the orbitg and its part-
ner orbitg p can be found by expanding the action ofg p in
part R in terms of g and in partL in terms of g i. The
derivation ofDS is the same as for systems withf =2 degrees
of freedomf8,9g. By using the parallelogram propertys38d,
which is justified sincetl .2Dtu andTg− tl .2Dts are large,
one finds thatDS is given in terms of the componentshsi ,uij
of the displacementdyWsxt

g ,tld by

DS; Sg − Sg p < dyWu
TSdyWs = o

j=1

f−1

Sclsjuj ; o
j=1

f−1

Sj . s39d

ThusDS equals the symplectic area of the parallelogram in-
troduced in Sec. II E; see Fig. 4. In the last two equalities in
Eq. s39d, we have used Eqs.s27bd and s29d and definedSj
;Sclsjuj. The approximations39d is correct up to second
order in the smallusi u , uui u !1. It is consistent with the con-
cept of the encounter region as it yields the same action
difference no matter at what positionxt+Dt

g within the encoun-
ter region it is evaluated. This is due to the conservation of
the symplectic product under the dynamics. As only small
action differencesDS," contribute significantly to the
semiclassical form factors16d, the restriction of the consid-
erations presented above to small componentsusi u , uui u
,Î" /Scl!1 is well justified.

Besides the two different actionsSg andSg p entering the
semiclassical form factors16d, one must also compare the
weightswg and wg p given by Eq.s14d. These weights are
equal up to small corrections of first order inui andsi as can
be shown in the following way. First of all, for any continu-
ous functionfsxd defined in phase space one finds, using Eq.
s32d,
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E
0

Tg p

dt8 fsxt8
g p

d . E
t

t+tl

dt8 fsxt8
g d +E

t+tl

Tg+t

dt8 fsTx2t+tl−t8
g d

s40d

with small corrections of the order ofusi u , uui u ,Î" /Scl. That
means that the integral over any functionfsxd along the part-
ner orbitg p is approximately given by integrals along parts
of g andg i. The corrections in Eq.s40d are primarily due to
the deviations of the partner orbitg p from the original orbit
g or its time-reversed versiong i within the encounter region.
Obviously, Eq.s40d yields Tg.Tg p for fsxd=1. Similarly,
we can apply Eq.s40d to the local growth ratesfsxd=xisxd,
which results intoli

g.li
g p

in view of Eq. s24d and of the
identity xisTxd=xisxd. Hence the Lyapunov exponents of the
two partner orbitsg andg p have to be almost equal. Finally,
we can also identifyfsxd with the local change in the wind-
ing number of the stable or unstable manifolds which allows
for a calculation of the Maslov indicesf29g. As the winding
number of a periodic orbit has to be an integer one finds that,
for smooth dynamics, the Maslov index of the partner orbit
has to be exactly equal to the Maslov index of the original
orbit f9,10g, i.e., mg=mg p. Putting these results together in
Eq. s14d, one concludes thatwg.wg p. In the spirit of a
stationary phase approximation we therefore keep only the
action differenceDS=Sg−Sg p in the phase while neglecting
small differences in the pre-exponential factors in Eq.s16d.

G. Statistics of partner orbits and the spectral form
factor

In the following we show how the orbit pairssg ,g pd
specified above determine the next-to-leading-order result
for the spectral form factor. We assume that the dominant
terms beyond the diagonal approximation in Eq.s16d are due
to the systematic action correlations of these orbit pairs. Thus
the double sum over periodic orbitss16d can be replaced by
a single sum over the orbitsg followed by a sum over all the
partner orbitsg p of g while all other terms are neglected,
i.e.,

Ks2dsTd =
T

TH
KK o

partnersg p

expSi
Sg − Sg p

"
DL

po,T

L
DE

,

s41d

where the periodic-orbit average overg is given by Eq.s17d.
All partner orbitsg p of g are characterized by the set of
action differenceshSjj defined in Eq.s39d. Therefore, setting
t=T/TH, the sum over the partner orbits in Eq.s41d can be
rewritten as an integral over theSj’s,

Ks2dstd = tKE
−SmaxsEd

SmaxsEd

dS1 ¯ dSf−1K df−1NgshSjjd
dS1 ¯ dSf−1

L
po,tTH

3expSio
j=1

f−1
Sj

"
DL

DE

, s42d

whereSmax stands for the maximal action difference occur-
ring among the pairs of partner orbits. The density of partner

orbitsg p for a given orbitg with the set of action differences
hSjj is denoted bydf−1NgshSjjd /dS1¯dSf−1. This quantity is
the crucial ingredient, and we will show how its periodic-
orbit average can be calculated in ergodic systems with an
arbitrary number of degrees of freedom. In contrast to the
case of two-dimensional systems, the derivation is signifi-
cantly more involved because of the higher number of stable
and unstable coordinates, Lyapunov exponents, and the
maximum conditions30d.

Let us for a moment fix one pointx on g sto simplify the
notation, we omit here the superscriptg on x and choose
temporarily the origin of time such thatxt=x for t=0d, and
consider the PSSP perpendicular to the orbit atx. The time-
reversed orbitg i pierces throughP many times. Some of
these piercings—each of it associated with a different time
tl—occur at pointsTxtl

close tox; see Figs. 3 and 5. Let
rgshsi ,uij ;xddf−1sdf−1u denote the number of such intersec-
tion points, with stable and unstable components ofdyW
=Txtl

−x lying in intervals ssi ,si +dsid and sui ,ui +duid, re-
spectively. We exclude fromrg all points Txtl

violating the
condition 2Dtu, tl ,Tg−2Dts since they either do not exist
at all or do not give rise to a distinct partner orbit. Thus we
have the density of valid intersection points,

rg„hsi,uij;x… =E
2Dtu

Tg−2Dts

dtld„fx − Txtl
gi…

3p
i=1

f−1

d„fx − Txtl
gu,i − ui…d„fx − Txtl

gs,i − si….

s43d

Here, the first delta function ensures thatTxtl
lies in P, i.e.,

that the coordinatefx−Txtl
gi of x−Txtl

in the direction par-
allel to the orbit vanishes. The lower indicess andu indicate
the stable and unstable components of the vectors inside the
square brackets.

In order to determine how many partner orbitsg p of a
given fixed orbitg exist with a given set of action differences
hSij, one has to count the number of corresponding encounter
regions ofg. As explained in the beginning of this section
each of these encounter regions can be associated to a dis-
placement vectordyW or to its corresponding time-evolved
dyWDt, −DtsøDtøDtu. Therefore we consider the dynamics

FIG. 5. Sketch of the PSS as it is shifted along the periodic orbit
g ssolid lined. Three pieces of the time-reversed orbitg i are repre-
sented by dashed lines. If the PSS moves with the flow in phase
space fromxt1

g to xt2
g all intersection points of the PSS withg i

change their positions according to the linearized equations of mo-
tion s20d. Note that not onlyg i but alsog itself could come close to
xt1

g at a later time. However, we have not include this in the sketch
above.
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within the PSSPt at xt
g. It can be parametrized by means of

the stable and unstable coordinates of the different vectors
dyWsxt

g ,tld associated to different timestl. As the PSS is
shifted following the phase-space flow along the orbitg, the
stable and unstable coordinates of each such vector change
leaving only the productsSj =Scl sjuj invariant. The vector
dyWDt=dyWDtsxt ,tld in Pt+Dt corresponding to a fixedtl thus
moves, asPt+Dt is shifted by increasingDt, on a hyperbola as
long asxt+Dt

g remains within the encounter region, i.e., for
−DtsøDtøDtu; see Fig. 6. Since the number of partner or-
bits is equal to the number of encounter regions one has now
to count each encounter region exactly once. This can be
achieved in two alternative ways:

sid One can measure the flux of vectorsdyW through the
hypersurface defining the end of the encounter regionssee
Fig. 6d. According to the definition of the encounter region
given in Sec. II D, this hypersurface consists of the faces
]C j

±=hssi ,uid : usi u øc, uui u øc,uj = ±cj, j =1, . . . ,f −1, of the
hypercube C=hssi ,uid : usi u øc, uui u øcj. The union of all
these faces defines as2f −3d-dimensional closed hypersur-
face]C contained in thes2f −2d-dimensional PSS. The cor-
responding flux is obtained by multiplying the densityrg

with the componentu̇j of the velocity of the vectordyW in the
direction normal to ]C j

±. This velocity is given by u̇j
=x jsxt

gdc; see Eq.s26d. Integrating along the orbit we obtain

df−1NgshSijd
dS1 ¯ dSf−1

=E
0

Tg

dto
j=1

f−1E
−c

c

df−1s df−1urgshsi,uij;xt
gdx jsxt

gdc

3 fdsuj − cd + dsuj + cdgSp
i=1

f−1

dsSclsiui − SidD .

s44d

The last product of delta functions restricts the action differ-
ences to the valueshSij. It should be noted that, since the
local growth ratex jsxt

gd can take negative values for some
timest, the vectordyW may also re-enter into the hypercubeC

through some face]Ck
± with a negative normal velocityu̇k

=xksxt
gdc swith possiblykÞ jd. However, sincedyW increases

exponentially with time at large times, there is one more
passing ofdyW through]C in the outwards directionsu̇.0d
than in the inwards directionsu̇,0d. The contributions of all
subsequent passings then mutually cancel each other in Eq.
s44d. Hence, for each encounter region, only the first cross-
ing of ]C at timeDt=Dtu is accounted for, as required. Let us
also mention that if we had taken any other closed hypersur-
face contained in the hypercubeC instead of]C the same
result would have been obtained. This is because the dynam-
ics conserves the number of points in phase space and thus
the number of vectorsdyW.

sii d An alternative version of Eq.s44d, treating all points
within the encounter region on equal footing, can be found as
follows. Every vectordyW is counted as long as it remains
within the hypercubeC. Therefore one has to include the
additional factor of 1/tenc, since per definitions31d, tenc is
approximately the time each vectordyW spends within that
hypercube. The density of partner orbitss44d can thus be
rewritten as

df−1NgshSijd
dS1 ¯ dSf−1

. E
0

Tg

dtE
−c

c

df−1s df−1u
rgshsi,uij;xt

gd
tencshsi,uij;xt

gd

3Sp
i=1

f−1

dsSclsiui − SidD . s45d

More precisely, this expression can be derived as follows
salso see the Appendixd. Consider first only the contribution
of the encounters atxt

g after timetl −2t, for a fixed tl and an
arbitrary timet. The time durationtenc of the encounter and
the productuisi of the stable and unstable components of
the vectordyWsxt

g ,tl −2td are independent oft as long asxt
g

stays within an encounter region, i.e., whilesi andui vary
within s−c,cd. The time spent by the point characterized
by dyWsxt

g ,tl −2td within the hypercubeC is approximately
equal totenc in the limit uui u , usi u ,Î" /Scl! l, where tenc is
large sof order ln"d. Indeed, although possible re-
entrances ofdyW into C ssee aboved may increase the total
time spent bydyW inside C to a value greater thantenc, the
relative error made by approximating it bytenc is small.
Using also the fact that the above-specified encounter re-
gions are disjointsif they were overlapping they would
define one bigger regiond, it follows that the right-hand
side srhsd of Eq. s45d gives approximately the density of
those encounter regions with respect to the action differ-
enceshSij. The results45d then follows by integratingtl
over all possible values.

Actually, expressionss44d and s45d are equivalent. Using
the fact that the number of vectorsdyW is conserved by the
dynamics, one can transform the integrals over the hypersur-
face]C into an integral over the entire volume of the hyper-
cube. More details on this proof of the equality between Eq.
s44d and Eq.s45d are given in the Appendix. It is important
for what follows to note that this equality still holds if the
range of integration oftl in Eq. s43d is replaced by the larger
interval s0,Tgd which corresponds to the additional inclusion
of intersection pointsdyW that cannot be associated with a

FIG. 6. Schematic drawing of a projection of the Poincaré sur-
face of sectionsPSSd. The flow of intersection pointssblack filled
circlesd is represented by the thin arrows. For long enough time the
unstable componentuj grows while the stable componentsj shrinks
with Sj =Sclsjuj being constant. There are two ways to count the
intersection points. Either the flux through theuj =c surfacesdotted
lined is considered, as in Eq.s44d, or one counts the number of
points in the volume of the encounter regionsdashed aread and
normalizes that by the time each point spends in there, as in Eq.
s45d.
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partner orbit. The reason for the introduction of the two dif-
ferent expressions for the number of partner orbits is because
of its crucial importance from a technical point of view. We
will apply either Eq.s44d or Eq. s45d depending on which
one can be calculated easier. It will turn out that this allows
for a major simplification of the derivations to follow.
In particular, the complicated analytic structure of
tencshsi ,uij ;xd, see Eqs.s30d ands31d, does not directly enter
the calculations.

The periodic-orbit average of the density of partner orbits
in Eq. s44d or Eq. s45d can be transformed into an average
over the constant-energy surface by means of the sum rule
s18d. After this step has been performed, the densityrg has to
be evaluated at arbitrary pointsx on a set of measure one
inside the constant-energy surface, instead of taking the
pointsxt

g belonging to periodic orbits as the arguments. For
such pointsx one can neglect classical correlations between
x and Txtl

for 2Dtuø tl øT−2Dts. This is becauseli
−1

!Dtu,s!T in the relevant limit usi u , uui u ,Î" /Scl!1, T
,TH,"1−f. More precisely, ergodicity allows one to ap-
proximate the time integral in Eq.s43d by a phase-space
average,

rshsi,uij;xd <
T − 2Dtsshsij;xd − 2Dtushuij;xd

V

3E dx8d„E − Hsx8d…dsfx − Tx8gid

3p
i=1

f−1

dsfx − Tx8gu,i − uiddsfx − Tx8gs,i − sid.

s46d

Since the Jacobian of the transformationsdq' ,dp'd
→ ssi ,uid gives a factorScl

f−1 this yields

rshsi,uij;xd < rlead+ rcorrshsi,uij;xd

=
Scl

f−1

V
T −

Scl
f−1

V
2tencshsi,uij;xd. s47d

Thereforer is given by a leading contribution plus a small
correction term due to the exclusion of short timestl violat-
ing condition s37d. The corrections to the ergodic approxi-
mation are not written in Eqs.s46d and s47d. Although they
may be bigger thanrcorr, one expects them to be strongly
reduced after averagingx over the constant-energy surface,
as required by the sum rule. This is not the case for the
correction termrcorr, which, as we shall see now, determines
the form factor.

Indeed, if only the leading termrlead in the densitys47d is
considered, one finds that the form factors42d vanishes in the
semiclassical limit for the following reason. Asrleaddoes not
depend onx and hsi ,uij, its contribution to the density of
partner orbits can be most easily calculated by means of Eq.
s44d. It yields

K df−1NgshSijd
dS1 ¯ dSf−1

L
po,T

sleadd

< 2f−1T2

V
o
j=1

f−1

l jp
iÞ j

f−1

lnSSclc
2

uSiu
D . s48d

Here we have used the identityx jsxd=l j. If this results48d is
inserted into the expression for the form factors42d, one
obtainsKs2dstd=0 due to the energy average.

Therefore the small correction termrcorr given in Eq.s47d
is of crucial importance. To determine its contribution to the
form factor, it turns out to be technically favorable to use
expressions45d instead of Eq.s44d for the density of partner
orbits. The reason is that the two appearances in Eqs.s45d
ands47d of tenc mutually cancel. Insertingrcorr from Eq.s47d
into Eq. s45d, one finds

K df−1NgshSijd
dS1 ¯ dSf−1

L
po,T

scorrd

= − 2f T

V
p
i=1

f−1

lnSSclc
2

uSiu
D . s49d

The results48d together with Eq.s49d gives the correct
asymptotic form of the averaged density of partners in the
limit "→0, t=T/TH fixed. Since the leading terms48d gives
a vanishing contribution to the form factors42d, only the
corrections49d determines the final result,

Ks2dstd . − 2t2
TH

V
p
j=1

f−1H− 2E
−`

`

dSj expSi
Sj

"
D lnS uSju

Sclc
2DJ

. − 2t2. s50d

This result is universal, i.e., it does not contain any informa-
tion about the set of Lyapunov exponentshlij or the constant
c defining the encounter region. Thus as our first major result
we find that the next-to-leading order correction beyond the
diagonal approximation agrees with the BGS conjecture in-
dependently of the number of degrees of freedom the system
possesses.

III. MATRIX ELEMENTS FLUCTUATIONS

The aim of this section is to evaluate the generalized form
factor KabsTd defined in Eq.s4d based on the method devel-
oped in the previous section. This form factor describes the
correlations of the diagonal matrix elementsknu âunl and

kmu b̂uml, corresponding to distinct energiesEn and Em, of

two given quantum observablesâ and b̂. We assume thatâ

and b̂ have well-behaved classical limits given by smooth
Weyl symbolsasxd andbsxd.

A. Leading term

To zeroth order in", the form factors4d is given by

KabsTd < asxd bsxdKsTd. s51d

Actually, Snirelman’s theoremf17g for classical ergodic
flows implies that the Wigner functions of almost all eigen-
statesunl with energiesEn converging toE are uniformly
distributed over the constant-energy surfaceHsxd=E in the
semiclassical limit. Equivalently, this means that the matrix
elementsknu âunl converge to the averages7d,
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knuâunl → asxd as " → 0, n → ` such that En < E.

s52d

It is worthwhile to mention that this is only true for eigen-
statesunl of the quantum Hamiltonian pertaining to a “set of
density 1.”3 Heller’s scarsf30g are prominent examples of
“exceptional” eigenstates violating Eq.s52d. Choosing, e.g.,
a Gaussian weight of widthDE in the energy average in Eq.
s2d, one can expressKabsTd for T.DT/2 as

KabsTd =
1

kdsEdlDE

1
Î2pDE2o

n,m
knuâunlkmub̂uml

3e−si/"dsEm−EndThsEm − End

3expS−
sEn + Em − 2Ed2

8DE2 D . s53d

Since all functions ofEn andEm vary noticeably on the scale
DE@ kdsEdlDE

−1 , the eigenstates not belonging to the “set of
density 1,” such as scars, have a negligible contribution to

the sum in Eq.s53d. One can then replaceknu âunlkmu b̂uml
by the productasxd bsxd and move this factor out of the sum.
This yields Eq.s51d, which is therefore a direct consequence
of Snirelman’s theorem.

To obtain information on matrix element fluctuations, one
thus needs to study the semiclassical correctionssnext term
in power of "d to the leading behaviors51d of the form
factor. Let us define

â8 = â − asxd1̂, b̂8 = b̂ − bsxd1̂, s54d

so that the associated Weyl symbolsa8sxd andb8sxd average
to zero. Then the form factorKabsTd is related toKa8b8sTd by
the formula

KabsTd − asxd bsxdKsTd = Ka8b8sTd + asxdK1b8sTd

+ bsxdKa81sTd. s55d

Comparing with Eq.s51d, one sees that the rhs of Eq.s55d
vanishes as"→0. The purpose of the two next subsections is
to estimate the first term of the rhs, which turns out to be
proportional to 1/TH=Os" f−1d. We start with the diagonal
contribution of pairs of identical orbitssmodulo time rever-
sald to Ka8b8sTd and then include the pairs of correlated orbits
sg ,g pd studied in Sec. II. We restrict our derivation to the
case of observables with vanishing mean, i.e.,asxd=bsxd
=0 so thata=a8 andb=b8. Therefore we shall not be con-
cerned further in this paper with the second and third terms
in Eq. s55d.

B. Correction term within the diagonal approximation

Let us first consider the semiclassical correction to the
leading terms51d within the diagonal approximation. This

correction has been already studied in Refs.f12–15g. How-
ever, we will argue below that the results of Refs.f12–15g
can only be applied to observablesasxd or bsxd independent
of the momentump. We treat here the more general case of
smooth observablesa andb depending on both the position
q and the momentump, by following the lines of Sec. II C of
Ref. f13g.

Retaining only the contribution of those pairs obtained by
pairing each orbit with itself or with its time-reversed version
in the double sums16d, the semiclassical form factor can be
written as

Kab
s1dsTd =

1

TH
KE

0

Tg dt

Tg

asxt
gdSE

0

Tg

dt9bsxt9
g d

+E
0

Tg

dt9bsTxt9
g dDL

po,T

. s56d

Substitutingt8= t9− t and using the periodicity ofg yields

Kab
s1dsTd =

2

TH
E

0

T

dtKE
0

Tg dt8

Tg

asxt
gdbSsxt+t8

g dL
po,T

s57d

with bSsxd as given in Eq.s9d.
We now assume that the classical dynamics is sufficiently

chaotic so that the time-correlation functions9d of the clas-
sical observablesasxd and bSsxd decays faster than 1/t to
zero. In strongly chaotic systems all classical correlation
functions of smooth observables decay exponentially, as a
result of a gap in the spectrum of the resonances of the
Frobenius-Perron operatorsall resonances but the one corre-
sponding to the Liouville measure are contained inside a
circle of radius strictly smaller than unityd f26g. The mixing
property makes sure that the time-correlation functionCab

S std
tends to zero in the large-t limit, but is still not strong enough
for our purpose: it does not imply thatCab

S std can be inte-
grated from 0 tò .

Applying the sum rules18d to Eq. s57d gives

Kab
s1dsTd .

2

TH
E

0

`

dt8 Cab
S st8d s58d

in the limit "→0 with t=T/TH fixed. If asxd or bsxd is a
function of the positionq only, then aSsxd=asxd or bSsxd
=bsxd, respectively. As a result,Cab

S std=Cabstd. In such a
case, Eq.s58d coincides with the result of Refs.f12g and
f13g. In the opposite case, the meanCab

S std of the correlation
function ofasxd andbsxd and the correlation function ofasxd
andbsTxd must be considered.

As noted in Ref.f13g, some chaotic systems which fulfill
the mixing property, such as the symmetric stadium billiard,
exhibit algebraic decays of correlations in 1/t. Then the in-
tegral in Eq.s58d diverges and the form factorKab

s1d is of order
TH

−1 ln TH instead ofT H
−1.

Let us also mention that, for chaotic dynamics, the inte-
grals e0

Tdt asxtd and e0
Tdt bSsxtd of the observablesasxd and

bSsxd along pieces ofsnonperiodicd trajectories of timeT,
thought as function of the initial pointx, may be often con-
sidered as Gaussian random variables with respect to the

3More precisely, the number of eigenstates satisfying Eq.s52d
with eigenenergiesEn in fE−DE,E+DEg, divided by the total num-
ber of eigenstates with eigenenergies in this interval, tends to 1 in
the limits "→0, kdsEdlDE

−1 !DE!E.
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Liouville measure for largeT’s f26g. These random variables
have a system-specific covariance 2Te0

`dt Cab
S std, which is

thus also related to the fluctuations of the diagonal matrix

elements ofâ and b̂ as given byKabsTd.

C. Contribution of the partner orbits

The contribution of the partner orbits to the semiclassical
form factor s16d is obtained by inserting the productAg Bg p

of the integrals of the classical observableasxd alongg and
of the observablebsxd alongg p in front of the exponential in
Eq. s41d. The forthcoming calculation is simplified by noting
that if g p is a partner orbit ofg, then its time-reversed ver-
sion gp,i is also a partner orbit ofg, with the same action.

This is because if one exchanges the role of partsR andL in
the definitions32d, the corresponding partner orbit is justgp,i.
As a result, one may equivalently insertAgsBg p+Bgp,id /2 in
front of the exponential in Eq.s41d, instead ofAgBg p. The
meansBg p+Bgp,id /2 is the integral of the symmetrized ob-
servablebSsxd given by Eq.s9d alongg p. It can be estimated
by applying Eq.s40d to bSsxd and usingbSsxd=bSsTxd to-
gether with the periodicity ofg. This yields

1

2
sBg p + Bgp,id . E

0

Tg dt9

Tg

bSsxt9
g d s59d

and reflects the fact that the two orbitsg and g i explore
almost the same phase-space regions as the two partner or-
bits g p andgp,i. Hence the generalization of Eq.s42d reads

Kab
s2dstd = tKE

−SmaxsEd

SmaxsEd

dS1 ¯ dSf−1K df−1NgshSijd

dS1 ¯ dSf−1
E

0

Tg dt8

Tg
E

0

Tg dt9

Tg

asxt8
g dbSsxt8+t9

g dL
po,tTH

expSio
j=1

f−1 Sj

"
DL

DE

. s60d

By using Eq.s44d and substitutingt8→ t-= t8− t before ap-
plying the sum rules18d, one finds that the leading contribu-
tion rlead to the density in Eq.s47d yields

K df−1NgshSijd
dS1 ¯ dSf−1

E
0

Tg dt8

Tg
E

0

Tg dt9

Tg

asxt8
g dbSsxt8+t9

g dL
po,T

sleadd

<
2f−1

V
o
j=1

f−1

p
iÞ j

f−1

ln SSclc
2

uSiu
D

3E
0

T

dt-E
0

T

dt9x jsxdasxt-dbSsxt-+t9d. s61d

Employing ergodicity, the integral overt- can be approxi-
mated by a phase-space average and yields
Tx jsxde0

`dt9Cab
S st9d. Thus inserting Eq.s61d into Eq. s60d

gives Kab
s2dstd=0. As in Sec. II, the contribution to the form

factor ofrlead thus vanishes. By using Eq.s45d, we obtain the
contribution of the small correction termrscorrd in Eq. s47d,

K df−1NgshSijd
dS1 ¯ dSf−1

E
0

Tg dt8

Tg
E

0

Tg dt9

Tg

asxt8
g dbSsxt8+t9

g dL
po,T

scorrd

<

− 2f 1

VTp
i=1

f−1

ln SSclc
2

uSiu
DE

0

T

dt-E
0

T

dt9asxt-dbSsxt-+t9d

s62d

since the dependence ontencshsi ,uij ;xd in Eq. s45d and Eq.
s47d mutually cancels. The averageasxt-dbSsxt-+t9d equals
the correlation functionCab

S st9d. It follows from Eq.s50d that,
as"→0,

Kab
s2dstd < − 2t

1

TH
E

0

`

dt Cab
S std. s63d

Remarkably, one obtains for the leading off-diagonal contri-
bution the same result as for the diagonal approximation,
with 2 replaced by −2t as in the spectral form factor. In
particular this means that the classical correlations enter in
exactly the same way via the correlation functionCab

S std.
Assuming that only identical orbits modulo time-reversal
symmetry and pairs of partner orbitssg ,g pd contribute to the
semiclassical form factors16d up to ordert 2 included, this
yields

Kabstd <
1

t TH
fKstd + Ost 3dgE

0

`

dt Cab
S std s64d

as announced in the Introduction. This result holds if the
correlation functionCab

S std decays faster than 1/t ast→`, in
order that the upper integration limitT=tTH may be replaced

by `. It is valid for observablesâ and b̂ such thatasxd
=bsxd=0 only.

If asxdÞ0 or bsxdÞ0, Eq. s55d must be used and the
second and third terms in the rhs of this equation have to be
estimated. Repeating the above calculation for these terms,
one finds that both vanish in zeroth order in", thus being in
accordance with Snirelman’s theorem. For instance, within
the diagonal approximation, Eq.s56d gives K

a81
s1d sTd

=2T H
−1ke0

Tgdt a8sxt
gdlpo,T<2ta8sxd, which is zero since

a8sxd=0. The leading contribution in" is thus governed by
the finite-time corrections to the sum rules18d. Similarly,
replacinga by a8 andb by 1 in Eq.s62d, the second integral
in the second member becomesTa8sxd, which means that
K

a81
s2d sTd<0 up to higher-order corrections in the sum rule.
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One concludes that our method does not allow us to estimate
Ka81 as "→0 beyond the leading order in". For systems
with exponential decay of classical correlation functions, it is
not irreasonable to expect that the finite-time corrections to
the sum rules18d are exponentially small inT. In such a case
Ka81 and K1b8 would be negligible with respect toKa8b8,
which is of order" f−1 by Eq. s64d.

IV. SUMMARY AND OUTLOOK

In this work we presented a semiclassical evaluation of
the generalized form factorKabstd going beyond the diagonal
approximation. We first considered the spectral form factor
Kstd=K11std for systems with more than two degrees of free-
dom, i.e.,f ù2. We proved that the leading contribution due
to pairs of periodic orbits with correlated actions is indepen-
dent of f in agreement with the RMT prediction. An impor-
tant step in our calculation was to show the equivalence be-
tween the two different approaches for counting partner
orbits which were independently developed in Ref.f9g and
Refs. f8,25g for two-dimensional systems. Based on these
results for the spectral form factor we then investigated the
generalized form factorKabstd. In this case we were able to
show a universal dependence ofKabstd on the rescaled time
t. Furthermore, we found that the contribution of the partner
orbits depends on the classical time-correlation function
Cab

S std in exactly the same way as in the diagonal approxi-
mation; see Eq.s64d. An interesting open question is to prove
sor disproved that this is still the case at higher orders int or
even for arbitrary larget.1. In such a case one could get rid
of the error termOst3d added toKstd in Eq. s64d.

Our semiclassical treatment of the generalized form factor
beyond the diagonal approximation can in principle be ex-
tended to other physical observables containing matrix ele-
ments in chaotic systems. This includes expressions where
transition matrix elements play a rolef31,33g se.g., dipole
excitations in quantum dotsf32gd, and linear response func-
tions for mesoscopic systemsf34g with applications to trans-
port, magnetism, or optical response. So far, nearly all semi-
classical approaches to such quantities have been relying on
the diagonal approximation, as long as additional averages
are involved. A notable exception is the calculation of the
weak localization correction to the conductance in Ref.f35g,
showing an important contribution of the partner orbits. It
would thus be of great interest to study the corrections to the
diagonal approximation in the various response functions ap-
pearing in mesoscopic physics.
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APPENDIX: TRANSFORMATION OF THE SURFACE
INTEGRAL INTO A VOLUME INTEGRAL

In this appendix we prove the equality of the two different
approaches for counting the partner orbits based on Eq.s44d

and Eq. s45d, respectively. To this end we show that an
equality of the general structure

E
0

T

dtE
V

dVdyW
%sdyW,td
tVsdyW,td

=E
0

T

dtE
]Vout

dAW dyW %sdyW,tdḋyWsdyW,td

sA1d

holds under the conditions which are relevant for the statis-
tics of the number of partners. Here,dyW is a vector in a
multidimensional space, e.g., thes2f −2d-dimensional PSS.
The volume element in this space is given bydVdyW

=df−1u df−1s while dAW dyW characterizes the surface element.
The left-hand side of Eq.sA1d thus contains an integral over
any 2f −2-dimensional volumeV in the PSS. InsideV we
follow the time evolution of a density field%sdyW ,td; the cor-

responding velocity field is denoted byḋyWsdyW ,td. As Eq.sA1d
is applied to the PSS following a periodic orbit of lengthT,
we can assume periodicity such that%sdyW ,td=%sdyW ,t+Td
and ḋyWsdyW ,td= ḋyWsdyW ,t+Td. Due to current conservation the
density is constant along the flow, i.e.,%sdyW ,0d=%sdyW t ,td or
%̇sdyW t ,td=0. The timetVsdyW ,td in Eq. sA1d is defined as the
total time a point spends in the volumeV if it starts at timet
at positiondyW and moves until timet+T. If the volumeV is
chosen to coincide with the hypercubeC defining the en-
counter region, see Sec. II D, thentV is approximately equal
to the timetenc, Eq. s31d. The surface ofV is decomposed as
]V=]Vin+]Vout. Here,]Vin/out stands for that part of the total

surface through which the flux defined by% andḋyW enters or
leavesV in the long-time limit, respectively. More precisely
speaking, the total flux between time 0 andT through any
piece of]Vout must be positive.

For the proof of relationsA1d let us first consider the case
where the total density%sdyW ,td is given by a single point
starting atdyW0, i.e.,%1sdyW ,td=dsdyW −dyW td. Then the timetV is
given as

tVsdyW t,td =E
t

t+T

dt8 QVsdyW t8d

=E
0

T

dt8E
V

dVdyW8 %1sdyW8,t8d

= tVsdyW0,0d, sA2d

whereQVsdyWd equals 1 ifdyW PV and zero otherwise. In Eq.
sA2d we made use of the periodicity of the motion. We then
obtain for the left-hand side of Eq.sA1d,

E
0

T

dtE
V

dVdyW
%1sdyW,td
tVsdyW,td

=
1

tVsdyW0,0d
E

0

T

dtE
V

dVdyW %1sdyW,td

= 1. sA3d

In close analogy we thus find that if the single point density
is replaced by%sdyW ,td=oi%isdyW ,td which represents an arbi-
trary numbern of points given by their initial conditions then
the left-hand side of Eq.sA1d just gives the total number of
particlesn that passV during one period. But this is exactly
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what the right-hand side of Eq.sA1d gives. It just measures
the outgoing flux through the surface ofV between time 0
and T which also yields the total number of particlesn be-
cause the particle number is conserved.

Finally we also note that the density%sdyW ,td is not re-
stricted to a sum ofd functions. Each of thesed functions
can also be multiplied with any functiongsdyW ,td that is con-
stant when following the flow withinV, i.e., gsdyW0,0d
=gsdyW t ,td. In the context of Sec. II G,g could, for example,
be any function of the action difference as in Eqs.s44d and
s45d. In this case the density% entering Eq.sA1d can be
considered as a weighted density%=rg.

If all local unstable growth ratesxksxd are non-negative
one can directly identifytV= tenc and thus the equalitysA1d
means that Eq.s44d exactly equals Eq.s45d. On the other
hand, if these local unstable growth rates assume negative
values in certain areas of the phase space then this implies
that the unstable components of a displacement vector can
also decrease onshort time scales. This would lead to a
multiple entry of the same point into the “encounter region”
characterized byV=C. In this case the relationsA1d means
that Eq.s45d is asymptotically equal to Eq.s44d as the length
tenc becomes large so thatutV− tencu! tenc or similarly tV
. tenc.
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